Instructions and notation:

- (i) Complete all problems. Give full justifications for all answers in the exam booklet.
- (ii) Lebesgue measure on Euclidean space is denoted by dx. By "measurable functions" we mean Lebesgue measurable functions.
- 1. (15 points) State and prove the Monotone Convergence Theorem.
- 2. (15 points)
 - (a) Write down the definition of a Stieltjes measure on the real line \mathbb{R} .
 - (b) Find all Stieltjes measures $v \neq 0$ on \mathbb{R} with

$$\int_{\mathbb{R}} fg \, d\nu = \left(\int_{\mathbb{R}} f \, d\nu \right) \left(\int_{\mathbb{R}} g \, d\nu \right)$$

for all non-negative continuous functions f and g.

- 3. (15 points) Prove or disprove three of the following statements.
 - (a) If $(f_n)_{n \in \mathbb{N}}$ is a sequence of measurable functions which converges in $L^1(\mathbb{R}, dx)$ then it converges in measure.
 - (b) If (f_n)_{n∈ℕ} is a sequence of integrable functions that converges almost everywhere on [0, 1], then it converges in L¹([0, 1], dx).
 - (c) If (f_n)_{n∈N} is a sequence of measurable functions that converges almost everywhere on [0, 1], then it converges in L[∞]([0, 1], dx).
 - (d) If $(f_n)_{n \in \mathbb{N}}$ is a sequence of measurable functions which converges in $L^1(\mathbb{R}, dx)$ then it converges almost everywhere.
- 4. (10 points) Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be σ -finite measure spaces. Let *E* be a measurable subset of $X \times Y$. Recall that the *x*-section of *E* is the set

 $\{y \in Y \mid (x, y) \in E\}$

and the y-section of E is the set

$$\{x \in X \mid (x, y) \in E\}.$$

Use Fubini's theorem to prove that if the *x*-section of *E* has *v*-measure 0 for μ -almost every $x \in X$, then the *y*-section of *E* has μ -measure 0 for *v*-almost every $y \in Y$.

5. (10 points) Compute

$$\lim_{n \to \infty} \int_{1/n}^{\infty} \frac{n^{3/2} y^{1/2} + y^{1/4} n^{1/4}}{n^2 y^2 + n^{-1}} dy$$

and justify all steps of your reasoning.

- 6. (10 points) Prove one of the following statements.
 - (a) If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are measurable then fg is also measurable.
 - (b) Let μ be a signed measure. A set A is a null set with respect to μ if and only if $|\mu|(A) = 0$, where $|\mu| = \mu^+ + \mu^-$ is the total variation of μ .