Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

1. (10 pts)
(a) ($\mathbf{5} \mathbf{~ p t s}$) In a finite abelian group, prove the order of each element divides the maximal order of all elements. (You may use the classification of finite abelian groups.)
(b) ($\mathbf{5} \mathbf{~ p t s}$) In a field F, use part a to prove every finite subgroup of $F^{\times}=F-\{0\}$ is cyclic.
2. ($\mathbf{1 0} \mathbf{~ p t s)}$ Let R be a commutative ring with identity and $R[x]$ be the polynomial ring over R.
(a) ($\mathbf{3} \mathbf{~ p t s})$ Prove the ideal (x) in $R[x]$ is a prime ideal if and only if R is an integral domain.
(b) (4 pts) Let I be an ideal of R. Prove that the following set is an ideal in $R[x]$:

$$
I[x]:=\left\{f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x]: a_{0}, a_{1}, \ldots, a_{n} \in I\right\} .
$$

(c) ($\mathbf{3} \mathbf{p t s}$) Prove that an ideal I of R is a prime ideal if and only if the ideal $I[x]$ of $R[x]$ from part b is a prime ideal.
3. ($\mathbf{1 0} \mathbf{p t s}$) Let G be a group and H be a subgroup.
(a) ($\mathbf{2} \mathbf{~ p t s})$ Define the normalizer of H in G.
(b) ($\mathbf{4} \mathbf{~ p t s) ~ P r o v e ~ c o n j u g a t e ~ s u b g r o u p s ~ h a v e ~ c o n j u g a t e ~ n o r m a l i z e r s : ~ i f ~} N$ is the normalizer of H in G, then for each $g \in G, g N g^{-1}$ is the normalizer of $g \mathrm{Hg}^{-1}$ in G.
(c) ($\mathbf{4} \mathbf{p t s}$) Let $G=\mathrm{GL}_{2}(\mathbf{R})$ and $H=\left\{\left(\begin{array}{cc}x & 0 \\ 0 & y\end{array}\right): x, y \in \mathbf{R}^{\times}\right\}$. Prove the normalizer of H in G is $\left\{\left(\begin{array}{cc}a & 0 \\ 0 & d\end{array}\right),\left(\begin{array}{ll}0 & b \\ c & 0\end{array}\right): a, b, c, d \in \mathbf{R}^{\times}\right\}$.
4. ($\mathbf{1 0} \mathbf{~ p t s)}$ The Fibonacci numbers $\left\{f_{n}\right\}$ are determined recursively for $n \geq 0$ by $f_{0}=0, f_{1}=1$, and $f_{n+2}=f_{n+1}+f_{n}$ for all $n \geq 0$.
(a) (3pts) Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. For all integers $n \geq 1$, show $A^{n}=\left(\begin{array}{cc}f_{n+1} & f_{n} \\ f_{n} & f_{n-1}\end{array}\right)$.
(b) $\left(\mathbf{4} \mathbf{p}\right.$ ts) Show the group $\mathrm{GL}_{2}(\mathbf{Z} / p \mathbf{Z})$, for prime p, has order $\left(p^{2}-1\right)\left(p^{2}-p\right)$.
(c) ($3 \mathrm{p} t \mathrm{~s})$ Use parts a and b to help you find, with proof, some integer $n \geq 1$ such that $f_{n} \equiv 0 \bmod 10$ while $f_{n+1} \equiv 1 \bmod 10$. (Hint: Use the prime factorization of 10 .)
5. ($\mathbf{1 0} \mathbf{p t s}$) An abelian group A is called divisible if, for each $a \in A$ and $n \in \mathbf{Z}^{+}$, there is a $b \in A$ (maybe not unique) such that $n b=a$. (Formally it says we can "divide" a by n, but the choice may not be unique so do not write $b=\frac{1}{n} a$.) For example, $(\mathbf{R},+)$ is divisible. Also $\left(\mathbf{C}^{\times}, \times\right)$is divisible since, for all $n \in \mathbf{Z}^{+}$, a number in \mathbf{C}^{\times}has an nth root in \mathbf{C}^{\times}(not unique if $n>1$).
Prove a nonzero divisible group can't be finitely generated.
6. ($\mathbf{1 0} \mathbf{~ p t s}$) Give examples as requested, with justification.
(a) (2.5 pts) Two nonconjugate elements of S_{4} that have the same order.
(b) ($\mathbf{2 . 5} \mathbf{~ p t s})$ Two commutative rings that are not isomorphic as rings but are isomorphic as additive groups.
(c) (2.5 pts) A formula for a ring isomorphism $\mathbf{R}[x] /\left(x^{2}-1\right) \rightarrow \mathbf{R} \times \mathbf{R}$.
(d) (2.5 pts) A cyclic $\mathbf{Z}[x]$-module (this means a $\mathbf{Z}[x]$-module having one generator) with a submodule that is not cyclic.

