Aug. 2018

Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

- 1. (**10 pts**)
 - (a) (5 pts) In a finite abelian group, prove the order of each element divides the maximal order of all elements. (You may use the classification of finite abelian groups.)
 - (b) (5 pts) In a field F, use part a to prove every finite subgroup of $F^{\times} = F \{0\}$ is cyclic.
- 2. (10 pts) Let R be a commutative ring with identity and R[x] be the polynomial ring over R.
 - (a) (3 pts) Prove the ideal (x) in R[x] is a prime ideal if and only if R is an integral domain.
 - (b) (4 pts) Let I be an ideal of R. Prove that the following set is an ideal in R[x]:

$$I[x] := \{ f(x) = a_0 + a_1 x + \dots + a_n x^n \in R[x] : a_0, a_1, \dots, a_n \in I \}.$$

- (c) (3 pts) Prove that an ideal I of R is a prime ideal if and only if the ideal I[x] of R[x] from part b is a prime ideal.
- 3. (10 pts) Let G be a group and H be a subgroup.
 - (a) (2 pts) Define the normalizer of H in G.
 - (b) (4 pts) Prove conjugate subgroups have conjugate normalizers: if N is the normalizer of H in G, then for each $g \in G$, gNg^{-1} is the normalizer of gHg^{-1} in G.
 - (c) (4 **pts**) Let $G = GL_2(\mathbf{R})$ and $H = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} : x, y \in \mathbf{R}^{\times} \right\}$. Prove the normalizer of H in G is $\left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}, \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} : a, b, c, d \in \mathbf{R}^{\times} \right\}$.
- 4. (10 pts) The Fibonacci numbers $\{f_n\}$ are determined recursively for $n \ge 0$ by $f_0 = 0$, $f_1 = 1$, and $f_{n+2} = f_{n+1} + f_n$ for all $n \ge 0$.
 - (a) (3pts) Let $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. For all integers $n \ge 1$, show $A^n = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix}$.
 - (b) (4pts) Show the group $GL_2(\mathbf{Z}/p\mathbf{Z})$, for prime p, has order $(p^2-1)(p^2-p)$.
 - (c) (3pts) Use parts a and b to help you find, with proof, some integer $n \geq 1$ such that $f_n \equiv 0 \mod 10$ while $f_{n+1} \equiv 1 \mod 10$. (Hint: Use the prime factorization of 10.)
- 5. (10 pts) An abelian group A is called *divisible* if, for each $a \in A$ and $n \in \mathbf{Z}^+$, there is a $b \in A$ (maybe not unique) such that nb = a. (Formally it says we can "divide" a by n, but the choice may not be unique so do *not* write $b = \frac{1}{n}a$.) For example, $(\mathbf{R}, +)$ is divisible. Also $(\mathbf{C}^{\times}, \times)$ is divisible since, for all $n \in \mathbf{Z}^+$, a number in \mathbf{C}^{\times} has an nth root in \mathbf{C}^{\times} (not unique if n > 1). Prove a nonzero divisible group can't be finitely generated.
- 6. (10 pts) Give examples as requested, with justification.
 - (a) (2.5 pts) Two nonconjugate elements of S_4 that have the same order.
 - (b) (2.5 pts) Two commutative rings that *are not* isomorphic as rings but *are* isomorphic as additive groups.
 - (c) (2.5 pts) A formula for a ring isomorphism $\mathbf{R}[x]/(x^2-1) \to \mathbf{R} \times \mathbf{R}$.
 - (d) (2.5 pts) A cyclic $\mathbf{Z}[x]$ -module (this means a $\mathbf{Z}[x]$ -module having one generator) with a submodule that is not cyclic.