COMPLEX ANALYSIS PRELIM

AUGUST, 2018

Notation and conventions:

- $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ is the open unit disk.
- The terminology analytic function and holomorphic function may be used interchangeably.

Problem 1. How many roots (counted with multiplicity) does the function $f(z)=5 z^{3}+e^{z}+1$ have in the unit disk \mathbb{D} ?

Problem 2. Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be holomorphic. Show that

$$
\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}} \quad \text { for all } z \text { in } \mathbb{D}
$$

Problem 3. Let a be a real number. Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic function that satisfies

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right| d t \leq r^{a}
$$

for all $r>0$. Show that f is a polynomial.
Problem 4. Let $\Omega=\left\{z=r e^{i \theta} \in \mathbb{C}: 0<r<2\right.$ and $\left.0<\theta<3 \pi / 2\right\}$. Explicitly describe a one-to-one holomorphic map from Ω onto the unit disk \mathbb{D}.

Problem 5. Let f be a holomorphic function on \mathbb{D}. Suppose $|f(z)| \leq\left|f\left(z^{2}\right)\right|$ for all $z \in \mathbb{D}$. Show that f is a constant.

Problem 6. (1) Let $\gamma=\{z \in \mathbb{C}:|z|=1\}$ be the unit circle, oriented in the counterclockwise direction. Evaluate

$$
\int_{\gamma} \frac{z^{2}+1}{z\left(z^{2}+4 z+1\right)} d z
$$

(2) Evaluate

$$
\int_{0}^{2 \pi} \frac{\cos x}{2+\cos x} d x
$$

(Hint: You can use the contour integral in part (1).)
Problem 7. Suppose that $f(z)$ is holomorphic on the punctured unit disk $\mathbb{D} \backslash\{0\}$ and that the real part of f is positive. Prove that f has a removable singularity at 0 .

