TOPOLOGY PRELIM, AUGUST 2018

Convention

- Let A and B be two sets. We denote $A \setminus B = \{x \in A; x \notin B\}$.
- Unless otherwise indicated, \mathbb{R}^n is endowed with the standard topology.
- 1. Let Γ be a subset in a compact topological space such that every point of Γ is an isolated point of Γ . Is Γ necessarily a finite set? Prove your assertion.
- 2. Compute the fundamental group of the quotient space $(S^1 \times S^1)/(S^1 \times \{x\})$, where x is a point in S^1 .
- 3. Let \mathcal{Z} be the topology on \mathbb{R}^2 such that every nonempty open set of \mathcal{Z} is of the form $\mathbb{R}^2 \setminus \{ \text{at most finitely many points} \}$.
 - (i) Is $(\mathbb{R}^2, \mathcal{Z})$ Hausdorff? Prove your assertion.
 - (ii) Is $(\mathbb{R}^2, \mathcal{Z})$ first countable? Prove your assertion.
- 4. Show that every continuous map from \mathbb{RP}^2 to S^1 is homotopic to a constant map.
- 5. Let M be the quotient space of $\mathbb{R}^3 \setminus \{0\}$ obtained by identifying the points (x, y, z) with $(2^m x, 2^m y, 2^m z)$ for any integer m. Is M homeomorphic to $S^2 \times S^1$? Prove your assertion.
- 6. Let X be a topological space and $\pi : \mathbb{R}^2 \to X$ a covering map. Let $B = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ and let K be a compact subset of X.
 - (i) Suppose $\pi : \mathbb{R}^2 \setminus B \to X \setminus K$ is a homeomorphism. Show that X is homeomorphic to \mathbb{R}^2 .
 - (ii) Suppose $\mathbb{R}^2 \setminus B$ is homeomorphic to $X \setminus K$, but the homeomorphism may not be given by π . Is X necessarily homeomorphic to \mathbb{R}^2 ? Prove your assertion.