Real Analysis PhD Exam, January 2008

Do 4 out the following 5 questions.

1. Find the limit as $n \rightarrow \infty$ or say that the limit does not exist, and justify your answer.
(a)

$$
\int_{0}^{\infty} n e^{-n x} \sin (1 / x) d x
$$

(b)

$$
\int_{0}^{1} \frac{1+n^{2} x^{2}}{(1+x)^{n}} d x
$$

2. Let μ be a finite measure on \mathbb{R} and define $F(x)=\mu((-\infty, x])$. Show

$$
\int[F(x+c)-F(x)] d x=c \mu(\mathbb{R})
$$

3. Suppose f is a positive integrable function on $[0,1]$ and define a measure μ on the Borel σ-algebra by

$$
\mu(A)=\int_{A} f(x) d x
$$

Prove without using the Radon-Nikodym theorem that

$$
\int_{B} \frac{1}{f(x)} \mu(d x)=m(B)
$$

for every Borel set B, where $m(B)$ is the Lebesgue measure of B.
4. Let $1 \leq p<\infty$. Prove that if a sequence of functions $f_{n} \in L_{p}(X, \mathcal{X}, \mu)$, $n \in \mathbb{N}$, is Cauchy in the L_{p}-norm, then there exists $f \in L_{p}$ such that $f_{n} \rightarrow f$ in the L_{p}-norm (that is, L_{p} is complete).
5. Say that $F: \mathbb{R} \mapsto \mathbb{R}$ is Lipschitz with constant M if

$$
\sup _{x \neq y}|F(x)-F(y)| /|x-y| \leq M
$$

Prove that a measurable function F is Lipschitz with constant M if and only if both F is absolutely continuous and $\left|F^{\prime}\right| \leq M$ a.s.

