Abstract Algebra Prelim

1. Let G be the subgroup of matrices in $GL_2(\mathbf{R})$ of the form

$$\left(\begin{array}{cc}a&b\\0&d\end{array}\right),$$

so $ad \neq 0$ and there are no constraints on b. Let G act on \mathbb{R}^2 in the usual way:

$$\left(\begin{array}{cc}a&b\\0&d\end{array}\right)\cdot \begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}ax+by\\dy\end{pmatrix}$$

- (a) Find the orbits of the points $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- (b) Compute the stabilizer subgroups in G of the points $\binom{0}{0}$, $\binom{1}{0}$, and $\binom{0}{1}$.
- (c) For g_1 and g_2 in $GL_2(\mathbf{R})$, if $g_1 \cdot v = g_2 \cdot v$ for all $v \in \mathbf{R}^2$, does $g_1 = g_2$?
- 2. Let G be a group. Its commutator subgroup G' is the subgroup generated by all commutators $[x, y] = xyx^{-1}y^{-1}$, for all $x, y \in G$.
 - (a) If H is a normal subgroup of G such that G/H is abelian, prove $G' \subset H$.
 - (b) Show every subgroup H lying between G and G', i.e. $G' \subset H \subset G$, is a normal subgroup of G and G/H is abelian.
- 3. Let G and H be groups, $\varphi \colon H \to \operatorname{Aut}(G)$ a homomorphism.
 - (a) Write down the group law in the semi-direct product $G \rtimes_{\varphi} H$ and determine the formula for the inverse of an element (g, h).
 - (b) Show that the subset $\{(g, 1) : g \in G\}$ of $G \rtimes_{\varphi} H$ is a normal subgroup. What about the subset $\{(1, h) : h \in H\}$?
 - (c) Explicitly define a homomorphism $\varphi \colon \mathbf{Z}/4\mathbf{Z} \to \operatorname{Aut}(\mathbf{Z}/3\mathbf{Z})$ so that the semi-direct product $\mathbf{Z}/3\mathbf{Z} \rtimes_{\varphi} \mathbf{Z}/4\mathbf{Z}$ is nonabelian and give an example of two noncommuting elements in the group. (Of course for the additive groups $\mathbf{Z}/3\mathbf{Z}$ and $\mathbf{Z}/4\mathbf{Z}$, the identity is 0, not 1.)
- 4. (a) Find a generator for the ideal (11 + i, 1 + 3i) in $\mathbf{Z}[i]$.
 - (b) Find a generator for the ideal $(11 + i) \cap (1 + 3i)$ in $\mathbb{Z}[i]$. (Hint: how are generators of ideals (a, b) and $(a) \cap (b)$ in \mathbb{Z} related?)
- 5. Let R be a commutative ring and S be a nonempty subset of R. The annihilator of S in R is the elements in R that multiply all of S to 0:

$$\operatorname{Ann}(S) = \{ a \in R \mid ax = 0 \text{ for all } x \in S \}.$$

- (a) Show Ann(S) is an ideal in R.
- (b) Compute $Ann(\{6,9\})$ in $\mathbb{Z}/12\mathbb{Z}$.
- 6. Give examples as requested, with brief justification.
 - (a) A group-theoretic property that distinguishes A_4 from D_6 (both have order 12).
 - (b) A domain R and prime ideal \mathfrak{p} such that R is not a PID but R/\mathfrak{p} is a PID.
 - (c) A ring R and an R-module that is not a free module.
 - (d) A matrix $A \in M_2(\mathbf{R})$ such that the only subspaces $V \subset \mathbf{R}^2$ for which $A(V) \subset V$ are $V = \{0\}$ and $V = \mathbf{R}^2$.

Jan. 2009