1. Let G be the subgroup of matrices in $\mathrm{GL}_{2}(\mathbf{R})$ of the form

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)
$$

so $a d \neq 0$ and there are no constraints on b. Let G act on \mathbf{R}^{2} in the usual way:

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \cdot\binom{x}{y}=\binom{a x+b y}{d y}
$$

(a) Find the orbits of the points $\binom{0}{0},\binom{1}{0}$, and $\binom{0}{1}$.
(b) Compute the stabilizer subgroups in G of the points $\binom{0}{0},\binom{1}{0}$, and $\binom{0}{1}$.
(c) For g_{1} and g_{2} in $\mathrm{GL}_{2}(\mathbf{R})$, if $g_{1} \cdot v=g_{2} \cdot v$ for all $v \in \mathbf{R}^{2}$, does $g_{1}=g_{2}$?
2. Let G be a group. Its commutator subgroup G^{\prime} is the subgroup generated by all commutators $[x, y]=x y x^{-1} y^{-1}$, for all $x, y \in G$.
(a) If H is a normal subgroup of G such that G / H is abelian, prove $G^{\prime} \subset H$.
(b) Show every subgroup H lying between G and G^{\prime}, i.e. $G^{\prime} \subset H \subset G$, is a normal subgroup of G and G / H is abelian.
3. Let G and H be groups, $\varphi: H \rightarrow \operatorname{Aut}(G)$ a homomorphism.
(a) Write down the group law in the semi-direct product $G \rtimes_{\varphi} H$ and determine the formula for the inverse of an element (g, h).
(b) Show that the subset $\{(g, 1): g \in G\}$ of $G \rtimes_{\varphi} H$ is a normal subgroup. What about the subset $\{(1, h): h \in H\}$?
(c) Explicitly define a homomorphism $\varphi: \mathbf{Z} / 4 \mathbf{Z} \rightarrow \operatorname{Aut}(\mathbf{Z} / 3 \mathbf{Z})$ so that the semi-direct product $\mathbf{Z} / 3 \mathbf{Z} \rtimes_{\varphi} \mathbf{Z} / 4 \mathbf{Z}$ is nonabelian and give an example of two noncommuting elements in the group. (Of course for the additive groups $\mathbf{Z} / 3 \mathbf{Z}$ and $\mathbf{Z} / 4 \mathbf{Z}$, the identity is 0 , not 1.)
4. (a) Find a generator for the ideal $(11+i, 1+3 i)$ in $\mathbf{Z}[i]$.
(b) Find a generator for the ideal $(11+i) \cap(1+3 i)$ in $\mathbf{Z}[i]$. (Hint: how are generators of ideals (a, b) and $(a) \cap(b)$ in \mathbf{Z} related?)
5. Let R be a commutative ring and S be a nonempty subset of R. The annihilator of S in R is the elements in R that multiply all of S to 0 :

$$
\operatorname{Ann}(S)=\{a \in R \mid a x=0 \text { for all } x \in S\}
$$

(a) Show $\operatorname{Ann}(S)$ is an ideal in R.
(b) Compute $\operatorname{Ann}(\{6,9\})$ in $\mathbf{Z} / 12 \mathbf{Z}$.
6. Give examples as requested, with brief justification.
(a) A group-theoretic property that distinguishes A_{4} from D_{6} (both have order 12).
(b) A domain R and prime ideal \mathfrak{p} such that R is not a PID but R / \mathfrak{p} is a PID.
(c) A ring R and an R-module that is not a free module.
(d) A matrix $A \in \mathrm{M}_{2}(\mathbf{R})$ such that the only subspaces $V \subset \mathbf{R}^{2}$ for which $A(V) \subset V$ are $V=\{0\}$ and $V=\mathbf{R}^{2}$.

