Some complex analysis prelim questions

January 21, 2009

1. Suppose f is a nonconstant entire function such that $f \circ f(z)=f(z)$ for all z. Prove that f must be the identity function.
2. Suppose f is entire, $f(0)=0$ and

$$
|f(z)| \leq e^{1 /|z|}
$$

for all $z \neq 0$. Prove that f is identically 0 .
3. Suppose for each n that f_{n} is a bounded continuous real-valued function on the unit circle $\{z:|z|=1\}$. Suppose for each n that u_{n} is a function that is continuous on the closed unit disk $\{z:|z| \leq 1\}$, is harmonic in the open unit disk $\{z:|z|<1\}$, and agrees with f_{n} on the unit circle. Show that $\left\{f_{n}\right\}$ is an equicontinuous family on the unit circle if and only if $\left\{u_{n}\right\}$ is an equicontinuous family on the closed unit disk.
4. Use residues to evaluate the definite integral

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)^{2}} d x
$$

5. Let $D=\{z=x+i y: 0<y<1, x>0\}$. Find a conformal mapping of D onto the open unit disk.
6. Suppose that for each n the function f_{n} is analytic in the open unit disk, $\left|f_{n}(0)\right| \leq 1$, and for each $r<1$ satisfies

$$
\int_{|z|=r}\left|f_{n}(z)\right|^{2}|d z| \leq 1
$$

Show that every subsequence of $\left\{f_{n}\right\}$ has a further subsequence which converges to a finite analytic function uniformly on each compact subset of the open unit disk.
7. Suppose for each n the function f_{n} is analytic on the open unit disk D and has exactly one zero in D. Suppose the sequence $\left\{f_{n}\right\}$ converges to f uniformly on each compact subset of the unit disk.
(a) Show that either f is identically zero on D or else has at most one zero in D.
(b) Give an example of a sequence $\left\{f_{n}\right\}$ where the limit function has no zeros in D.

