INSTRUCTIONS: Answer three out of five questions. You do not have to prove results which you rely upon, just state them clearly.

Good luck!

- Q1) Answer 3 out of 4 questions (a), (b), (c), (d).
 - (a) Let $x_0, x_1, x_2, \ldots, x_n$ (such that $x_k \neq x_m$ when $k \neq m$) be given. Let

$$L_k(x) = \begin{cases} \frac{(x-x_1)\cdots(x-x_n)}{(x_0-x_1)\cdots(x_0-x_n)} & k = 0\\ \frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)} & 0 < k < n\\ \frac{(x-x_0)\cdots(x-x_{n-1})}{(x_n-x_0)\cdots(x_n-x_{n-1})} & k = n \end{cases}$$

Prove that for $k = 0, 1, \ldots, n$ we have

$ \begin{array}{c} 1 \\ x_0 \\ x_0^2 \end{array} $	$ \begin{array}{c} 1\\ x_1\\ x_1^2 \end{array} $	$ \begin{array}{c} 1 \\ x_2 \\ x_2^2 \end{array} $	· · · · · · · ·	$\begin{array}{c}1\\x_n\\x_n^2\\x_n^2\end{array}$	$\begin{bmatrix} L_0(x) \\ L_1(x) \\ L_2(x) \end{bmatrix}$	$\left[\begin{array}{c}1\\x\\x^2\end{array}\right]$
x_0^3 :	x_1^3 x_1^3	x_2^3		x_n^3	$\left \begin{array}{c} L_2(x)\\ L_3(x)\\ \dots\end{array}\right =$	$\begin{bmatrix} x \\ x^3 \\ \dots \end{bmatrix}$
x_0^n	\vdots x_1^n	x_2^n		\vdots x_n^n	$\begin{bmatrix} L_n(x) \end{bmatrix}$	$\begin{bmatrix} x^n \end{bmatrix}$

Vandermonde matrix

(b) Use the condition

 $x_i \neq x_j$ for $i \neq j$,

to prove that the above Vandermonde matrix is nonsingular.

(c) Let $P_{i_0i_1...i_k}(x)$ be the (unique) polynomial that interpolates at points

 $(x_{i_m}, f_{i_m}) \qquad m = 0, \dots k.$

Prove that these polynomials are linked by the following recursion:

$$P_{i_0\dots i_k}(x) = \frac{(x - x_{i_0})P_{i_1i_2\dots i_k} - (x - x_{i_k})P_{i_0i_1\dots i_{k-1}}}{x_{i_k} - x_{i_0}}.$$

- (d) Use the result of (c) to formulate and to derive the Neville algorithm for evaluating the interpolation polynomial $P_{0,1,\dots,n}(x)$ at a point x, given the interpolation data $\{x_i, f_i\}_{i=0}^n$.
- **Q2)** (a) Let

$$y = (c - \sum_{i=1}^{k-1} a_i b_i) / b_k$$

is evaluated in the standard model of floating point arithmetic according to

$$s = c$$

for
$$s = 1 : k - 1$$

$$s = s - a_i b_i$$

end
$$y = s/b_k$$

Prove that computed \hat{y} satisfies

$$b_k \widehat{y}(1+\theta_k) = c - \sum_{i=1}^{k-1} a_i b_i (1+\theta_i)$$

with $|\theta_i| \leq \gamma_i := \frac{iu}{1-iu}$ where u is the machine precision.

(b) Use the above result to show that if the Gaussian elimination algorithm applied to an $n \times n$ matrix A runs to completion, the computed factors \hat{L} and \hat{U} satisfy

$$\widehat{L}\widehat{U} = A + \Delta A$$

with

$$|\Delta A| \le \gamma_n |\widehat{L}| \cdot |\widehat{U}|.$$

- **Q3)** Answer 4 out of 5 questions (a), (b), (c), (d), (e).
 - (a) Define the DFT matrix and derive the formula for its inverse.
 - (b) Describe the FFT algorithm for arbitrary $N = 2^k$. Specifically, describe the divide-andconquer strategy and provide the formula reducing F_N to two $F_{N/2}$'s.
 - (c) Let C(N) denote the cost of the FFT of the order N. Prove the formula

$$C(N) = \begin{cases} b & N = 1\\ 2C(\frac{N}{2}) + bN & N > 1 \end{cases}$$

- (d) Use the result of (c) to derive the assymptotic formula (i.e., up to a multiplicative constant) for the number of arithmetic used by the FFT algorithm.
- (e) Define a circulant matrix and the DFT matrix. Prove that any circulant is diagonalized by the DFT matrix.
- Q4) Let w(x) be a positive continuous function on [a, b]. For $j = 1, 2, ..., let p_j(x)$ be the corresponding monic orthogonal polynomial of degree j, i.e.,

$$p_j(x) = x^j + a_1 x^{j-1} + \dots + a_j,$$

such that $(p_j, p_k) = \int_a^b w(x) p_j(x) p_k(x) dx = 0$ if $j \neq k$. In particular $p_0(x) = 1$.

- (a) Prove that the roots $x_1, ..., x_n$ of $p_n(x)$ are real, simple and lie in (a, b).
- (b) Prove that $p_n(x)$ satisfy a three term recurrence relation, i.e.,

$$p_{i+1}(x) = (x - \delta_{i+1})p_i(x) - \gamma_{i+1}^2 p_{i-1}(x), \quad 1 \ge 0,$$

where $p_{i-1} = 0$, $\gamma_1 = 0$, and

$$\delta_{i+1} = \frac{(xp_i, p_i)}{(p_i, p_i)}, \quad i \ge 0, \quad \gamma_{i+1}^2 = \frac{(p_i, p_i)}{(p_{i-1}, p_{i-1})}, \quad i \ge 1.$$

- (c) For a = -1; b = 1; w(x) = 1; find $p_1(x)$ and $p_2(x)$.
- Q5) Answer 3 out of 4 questions (a), (b), (c), (d).
 - (a) Define a Hankel matrix. Let H be an $n \times n$ positive definite Hankel matrix. Relate the factorization

$$H\widetilde{U} = \widetilde{L} \tag{1}$$

to the standard LDL^* factorization of H to prove that (1) always exists and it is unique. Here \tilde{U} is a unit (i.e., with 1's on the main diagonal) upper triangular matrix, and \tilde{L} is a lower triangular matrix.

(b) Let $\langle \cdot, \cdot \rangle$ be an inner product in the vector space Π_n (of all polynomials whose degree does not exceed n). Let the above Hankel matrix H be a moment matrix, i.e., $H = [\langle x^i, x^j \rangle]_{i,j=0}^n$. Let

$$u_k(x) = u_{0,k} + u_{1,k}x + u_{2,k}x^2 + \ldots + u_{k-1,k}x^{k-1} + x^k.$$
(2)

be the k-th orthogonal polynomial with respect to $\langle \cdot, \cdot \rangle$. Prove that the k-th column of the matrix \tilde{U} of (a) contains the coefficients of $u_k(x)$ as in

	1	$u_{0,1}$	$u_{0,2}$	$u_{0,3}$	• • •	• • •	$u_{0,n}$]
	0	1	$u_{1,2}$	$u_{1,3}$	• • •	• • •	$u_{1,n}$	
	0	0	1	$u_{2,3}$	•••	•••	$u_{2,n}$	
$\widetilde{U} =$:		0	1			$u_{3,n}$.
	:			·	·		÷	
	:				۰.	1	$u_{n-1,n}$	
	0				• • •	0	1	

- (c) Derive a algorithm to compute the columns of \widetilde{U} based on the formula (deduce it) that relates the k-th column u_k of U to its two "predecessors" u_{k-2}, u_{k-1} (k = 3, ..., n).
- (d) Prove that the algorithm of (c) uses $O(n^2)$ arithmetic operations.