INSTRUCTIONS: Answer three out of five questions. You do not have to prove results which you rely upon, just state them clearly.

Good luck!

Q1) Answer 3 out of 4 questions (a), (b), (c), (d).
(a) Let $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ (such that $x_{k} \neq x_{m}$ when $k \neq m$) be given. Let

$$
L_{k}(x)= \begin{cases}\frac{\left(x-x_{1}\right) \cdot \ldots \cdot\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right) \cdots \cdot\left(x_{0}-x_{n}\right)} & k=0 \\ \frac{\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdot \ldots \cdot\left(x-x_{n}\right)}{\left(x_{k}-0_{0}\right) \cdots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \cdot \ldots \cdot\left(x_{k}-x_{n}\right)} & 0<k<n \\ \frac{\left(x-x_{0}\right) \ldots \cdot\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right) \cdot \ldots \cdot\left(x_{n}-x_{n-1}\right)} & k=n\end{cases}
$$

Prove that for $k=0,1, \ldots, n$ we have

$$
\underbrace{\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
x_{0} & x_{1} & x_{2} & \cdots & x_{n} \\
x_{0}^{2} & x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\
x_{0}^{3} & x_{1}^{3} & x_{2}^{3} & \cdots & x_{n}^{3} \\
\vdots & \vdots & \vdots & & \vdots \\
x_{0}^{n} & x_{1}^{n} & x_{2}^{n} & \cdots & x_{n}^{n}
\end{array}\right]}_{\text {Vandermonde matrix }}\left[\begin{array}{c}
L_{0}(x) \\
L_{1}(x) \\
L_{2}(x) \\
L_{3}(x) \\
\cdots \\
L_{n}(x)
\end{array}\right]=\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
x^{3} \\
\cdots \\
x^{n}
\end{array}\right]
$$

(b) Use the condition

$$
x_{i} \neq x_{j} \quad \text { for } \quad i \neq j,
$$

to prove that the above Vandermonde matrix is nonsingular.
(c) Let $P_{i_{0} i_{1} \ldots i_{k}}(x)$ be the (unique) polynomial that interpolates at points

$$
\left(x_{i_{m}}, f_{i_{m}}\right) \quad m=0, \ldots k .
$$

Prove that these polynomials are linked by the following recursion:

$$
P_{i_{0} \ldots i_{k}}(x)=\frac{\left(x-x_{i_{0}}\right) P_{i_{1} i_{2} \ldots i_{k}}-\left(x-x_{i_{k}}\right) P_{i_{0} i_{1} \ldots i_{k-1}}}{x_{i_{k}}-x_{i_{0}}} .
$$

(d) Use the result of (c) to formulate and to derive the Neville algorithm for evaluating the interpolation polynomial $P_{0,1, \ldots, n}(x)$ at a point x, given the interpolation data $\left\{x_{i}, f_{i}\right\}_{i=0}^{n}$.
Q2) (a) Let

$$
y=\left(c-\sum_{i=1}^{k-1} a_{i} b_{i}\right) / b_{k}
$$

is evaluated in the standard model of floating point arithmetic according to

$$
\begin{array}{ll}
s=c & \\
\text { for } & i=1: k-1 \\
& s=s-a_{i} b_{i} \\
\text { end } & \\
y=s / b_{k} &
\end{array}
$$

Prove that computed \widehat{y} satisfies

$$
b_{k} \widehat{y}\left(1+\theta_{k}\right)=c-\sum_{i=1}^{k-1} a_{i} b_{i}\left(1+\theta_{i}\right)
$$

with $\left|\theta_{i}\right| \leq \gamma_{i}:=\frac{i u}{1-i u}$ where u is the machine precision.
(b) Use the above result to show that if the Gaussian elimination algorithm applied to an $n \times n$ matrix A runs to completion, the computed factors \widehat{L} and \widehat{U} satisfy

$$
\widehat{L} \widehat{U}=A+\Delta A
$$

with

$$
|\Delta A| \leq \gamma_{n}|\widehat{L}| \cdot|\widehat{U}|
$$

Q3) Answer 4 out of 5 questions (a), (b), (c), (d), (e).
(a) Define the DFT matrix and derive the formula for its inverse.
(b) Describe the FFT algorithm for arbitrary $N=2^{k}$. Specifically, describe the divide-andconquer strategy and provide the formula reducing F_{N} to two $F_{N / 2}$'s.
(c) Let $C(N)$ denote the cost of the FFT of the order N. Prove the formula

$$
C(N)=\left\{\begin{array}{cc}
b & N=1 \\
2 C\left(\frac{N}{2}\right)+b N & N>1
\end{array}\right.
$$

(d) Use the result of (c) to derive the assymptotic formula (i.e., up to a multiplicative constant) for the number of arithmetic used by the FFT algorithm.
(e) Define a circulant matrix and the DFT matrix. Prove that any circulant is diagonalized by the DFT matrix.

Q4) Let $w(x)$ be a positive continuous function on $[a, b]$. For $j=1,2, \ldots$, let $p_{j}(x)$ be the corresponding monic orthogonal polynomial of degree j, i.e.,

$$
p_{j}(x)=x^{j}+a_{1} x^{j-1}+\cdots+a_{j}
$$

such that $\left(p_{j}, p_{k}\right)=\int_{a}^{b} w(x) p_{j}(x) p_{k}(x) d x=0$ if $j \neq k$. In particular $p_{0}(x)=1$.
(a) Prove that the roots $x_{1}, . ., x_{n}$ of $p_{n}(x)$ are real, simple and lie in (a, b).
(b) Prove that $p_{n}(x)$ satisfy a three term recurrence relation, i.e.,

$$
p_{i+1}(x)=\left(x-\delta_{i+1}\right) p_{i}(x)-\gamma_{i+1}^{2} p_{i-1}(x), \quad 1 \geq 0
$$

where $p_{i-1}=0, \quad \gamma_{1}=0$, and

$$
\delta_{i+1}=\frac{\left(x p_{i}, p_{i}\right)}{\left(p_{i}, p_{i}\right)}, \quad i \geq 0, \quad \gamma_{i+1}^{2}=\frac{\left(p_{i}, p_{i}\right)}{\left(p_{i-1}, p_{i-1}\right)}, \quad i \geq 1
$$

(c) For $a=-1 ; b=1 ; w(x)=1$; find $p_{1}(x)$ and $p_{2}(x)$.

Q5) Answer 3 out of 4 questions (a), (b), (c), (d).
(a) Define a Hankel matrix. Let H be an $n \times n$ positive definite Hankel matrix. Relate the factorization

$$
\begin{equation*}
H \widetilde{U}=\widetilde{L} \tag{1}
\end{equation*}
$$

to the standard $L D L^{*}$ factorization of H to prove that (1) always exists and it is unique. Here \widetilde{U} is a unit (i.e., with 1's on the main diagonal) upper triangular matrix, and \widetilde{L} is a lower triangular matrix.
(b) Let $\langle\cdot, \cdot\rangle$ be an inner product in the vector space Π_{n} (of all polynomials whose degree does not exceed n). Let the above Hankel matrix H be a moment matrix, i.e., $H=$ $\left[\left\langle x^{i}, x^{j}\right\rangle\right]_{i, j=0}^{n}$. Let

$$
\begin{equation*}
u_{k}(x)=u_{0, k}+u_{1, k} x+u_{2, k} x^{2}+\ldots+u_{k-1, k} x^{k-1}+x^{k} . \tag{2}
\end{equation*}
$$

be the k-th orthogonal polynomial with respect to $\langle\cdot, \cdot\rangle$. Prove that the k-th column of the matrix \widetilde{U} of (a) contains the coefficients of $u_{k}(x)$ as in

$$
\widetilde{U}=\left[\begin{array}{ccccccc}
1 & u_{0,1} & u_{0,2} & u_{0,3} & \cdots & \cdots & u_{0, n} \\
0 & 1 & u_{1,2} & u_{1,3} & \cdots & \cdots & u_{1, n} \\
0 & 0 & 1 & u_{2,3} & \cdots & \cdots & u_{2, n} \\
\vdots & & 0 & 1 & \cdots & \cdots & u_{3, n} \\
\vdots & & & \ddots & \ddots & & \vdots \\
\vdots & & & & \ddots & 1 & u_{n-1, n} \\
0 & & & \cdots & \cdots & 0 & 1
\end{array}\right] .
$$

(c) Derive a algorithm to compute the columns of \widetilde{U} based on the formula (deduce it) that relates the k-th column u_{k} of U to its two "predecessors" $u_{k-2}, u_{k-1}(k=3, \ldots, n)$.
(d) Prove that the algorithm of (c) uses $O\left(n^{2}\right)$ arithmetic operations.

