Abstract Algebra Prelim

- 1. Prove the rings $\mathbf{Z}/mn\mathbf{Z}$ and $\mathbf{Z}/m\mathbf{Z} \times \mathbf{Z}/n\mathbf{Z}$ are isomorphic when m and n are relatively prime (positive) integers. Discuss whether these rings are ever isomorphic when m and n are not relatively prime.
- 2. Let $S = \{(z, w) \in \mathbb{C} \times \mathbb{C} : |z|^2 + |w|^2 = 1\}$. For a positive integer m, let $\mathbb{Z}/m\mathbb{Z}$ act on the set S by

$$(a \mod m) \cdot (z, w) = \left(e^{2\pi i a/m} z, e^{8\pi i a/m} w\right).$$

- (a) Show this is a group action of $\mathbf{Z}/m\mathbf{Z}$ on S.
- (b) If m is odd, show every orbit in this group action has m elements.
- (c) If m is even, show the orbit of some point in S has less than m elements.
- 3. Use Zorn's lemma to show every nontrivial finitely generated group contains a maximal subgroup. (A maximal subgroup is a proper subgroup contained in no other proper subgroup.) Do not assume the group is abelian.
- 4. (a) Let a be any complex number. Prove that the map $\phi : \mathbf{R}[x] \to \mathbf{C}$ defined by $\phi(f(x)) = f(a)$ is a homomorphism of rings.
 - (b) Prove that $\mathbf{R}[x]/(x^2+1)$ is a field which is isomorphic to **C**.
- 5. (a) Let R be a commutative ring with identity and I be an ideal in R. Show that R/I is a field if and only if I is a maximal ideal.
 - (b) Let R be a PID and P be a nonzero prime ideal in R. Show that P is a maximal ideal.
- 6. Give examples as requested, with brief justification.
 - (a) A nonabelian group which is not isomorphic to a semidirect product of nontrivial groups.
 - (b) A 2-Sylow subgroup of S_4 .
 - (c) A PID other than **Z**.
 - (d) A unit other than ± 1 in $\mathbb{Z}[\sqrt{7}]$.