
MATH 5510 – Preliminary Examination.

January 18, 2010

Instructions: Answer two out of the three questions. You do not have
to prove results which you rely upon, just state them clearly !

Q1) (a) Suppose that A(1) = A is an invertible n×n matrix and that the
Gaussian elimination algorithm with partial pivoting applied to A(1) produces
the upper triangular matrix A(n). As usual, let A(k) be the renamed A(k)

following any necessary row intrechanges before the k–th major step of the
elimination so that

a
(k+1)
i,j =


a

(k)
i,j , when i ≤ k, 1 ≤ j ≤ n,

0 when i ≥ k + 1, 1 ≤ j ≤ k,
a

(k)
i,j − a

(k)
i,k a

(k)
k,j/a

(k)
k,k, when i, j ≥ k + 1.

Show that the total number of multiplication and division operations needed
to reduce A(1) to A(n) is (n3 − n)/3. [Hint: Recall that

∑n
i=1 i

2 = n(n +
1)(2n+ 1)/6.]

b) Suppose that all the leading principal minors of A are positive. Show
that A has an LU–factorization with unit diagonal entries in L and positive
diagonal entries in U .

c) Suppose now that no partial pivoting is necessary and that A(1) =(
a

(1)
i,j

)
is tridiagonal, that is, a

(1)
i,j = 0 when |i− j| > 1, 1 ≤ i, j ≤ n. Show

that each of A(1), . . . , A(n) is tridiagonal.



d) Suppose that A is an n × n invertible matrix which admits an LU–
factorization without pivoting. Partition A into:

A =

A1,1 A1,2

A2,1 A2,2

 ,
with A1,1 being a (k − 1) × (k − 1) matrix. Knowing that A1,1 is invertible
(why?), show that the current active array which is the (n−k+1)×(n−k−1)

matrix Ak =
(
a

(k)
i,j

)
, i, j = k, . . . , n is given by:

Ak = A2,2 − A2,1A
−1
2,2A1,2.

Assume now that in addition to A being invertible and admitting an LU–
factorization without pivoting, A is Hermitian. Use this formula to deduce
that Ak is also Hermitian, for k = 1, . . . , n.

Q2) (a) Prove the de la Vallée–Poussin lemma: Suppose that f is a real
function on the interval [a, b]. Let Ωn be the set of all polynomials of degree
at most n on [a, b] and let P ∈ Ωn. Suppose there exist n+ 2 partition points

a ≤ x1 < x2 < . . . < xn+2 ≤ b (∗)

and n+ 2 positive numbers λ1, . . . , λn+2 such that

f(xi)− P (xi) = (−1)i+mλi, i = 1, . . . , n+ 2,

for some fixed integer m, m = 0 or m = 1. Then

min
Q∈Ωn

‖f −Q‖∞ ≥ min{λ1, . . . , λn+2}.

Explain in your own words why the de la Vallée–Poussin lemma implies
that if there exist n+ 2 points x1, . . . , xn+2 in the interval [a, b] satisfying (∗)
such that at these points the function f and the polynomial P satisfy that

f(xi)− P (xi) = (−1)i+m‖f − P‖∞, i = 1, . . . , n+ 2,

for some fixed integer m, m = 0 or m = 1, then P is the best approximation
polynomial for f in Ωn.
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(b) If the function f(x) = ex is approximated on the interva; [−1, 1] by a
4–th order Maclaurin polynomial, the resulting approximation is given by:

P4(x) = 1 + x+
x2

2
+
x3

6
+
x4

24

and the error is given by:

R4(x) =
x5f (5)(ξx)

5!
,

for some point ξx ∈ [−1, 1]. Show that if P4(x) is now best approximated by
a polynomial, call it Q3(x), of order at most 3 on the interval [−1, 1], then

|f(x)−Q3(x)| ≤ |f(x)−R4(x)|+ |R4(x)−Q3(x)| ≤ 0.03.

(c) Let S be the natural cubic spline that interpolates f ∈ C2[a, b] at the
knots:

a = x0 < x1 < . . . < xN = b.

Show that ∫ b

a
(S ′′(x))2dx ≤

∫ b

a
(f ′′(x))2dx,

and give an interpretation of this result.

3) (a) Let
∑n
k=1 αkfk be a Guassian quadrature scheme based on a sys-

tem of orthogonal polynomials {pj}nj=1 (with respect to the weight function
w(x) = 1) on the interval [a, b]. Show that the weights α1, . . . , αn are positive.

(b) The Simpson’s Three–Eighths quadrature rule for approximating∫ b
a f(x)dx is a closed Newton–Cotes rule obtained by diving the interval [a, b]

into 3 subintervals of equal length h and approximation f on [a, b] by an
interpolation polynomial on the 4 points x0, x1, x2, and x3, where x0 = a,
x3 = b, and h = xi − xi−1, for i = 1, 2, 3. Show that Simpson’s Three–
Eighths rule is give by:

I4(f) =
3h

8
[f0 + 3f1 + 3f2 + f3].

For approximating
∫ π

0 sin(x)dx = 2, compare the usual Simpson’s rule
with his Three–Eighths rule.
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Without carrying out a detailed error analysis for Simpson’s Three–
Eighths rule and comparing it with the error analysis for his usual rule,
in what sense can we regard the the Three–Eighths rule to be superior to the
usual one. Justify your answer.
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