MATH 5510 - Preliminary Examination.

January 18, 2010

Instructions: Answer two out of the three questions. You do not have to prove results which you rely upon, just state them clearly !

Q1) (a) Suppose that $A^{(1)}=A$ is an invertible $n \times n$ matrix and that the Gaussian elimination algorithm with partial pivoting applied to $A^{(1)}$ produces the upper triangular matrix $A^{(n)}$. As usual, let $A^{(k)}$ be the renamed $A^{(k)}$ following any necessary row intrechanges before the k-th major step of the elimination so that

$$
a_{i, j}^{(k+1)}= \begin{cases}a_{i, j}^{(k)}, & \text { when } i \leq k, 1 \leq j \leq n \\ 0 & \text { when } i \geq k+1,1 \leq j \leq k \\ a_{i, j}^{(k)}-a_{i, k}^{(k)} a_{k, j}^{(k)} / a_{k, k}^{(k)}, & \text { when } i, j \geq k+1\end{cases}
$$

Show that the total number of multiplication and division operations needed to reduce $A^{(1)}$ to $A^{(n)}$ is $\left(n^{3}-n\right) / 3$. [Hint: Recall that $\sum_{i=1}^{n} i^{2}=n(n+$ 1) $(2 n+1) / 6$.]
b) Suppose that all the leading principal minors of A are positive. Show that A has an LU-factorization with unit diagonal entries in L and positive diagonal entries in U.
c) Suppose now that no partial pivoting is necessary and that $A^{(1)}=$ $\left(a_{i, j}^{(1)}\right)$ is tridiagonal, that is, $a_{i, j}^{(1)}=0$ when $|i-j|>1,1 \leq i, j \leq n$. Show that each of $A^{(1)}, \ldots, A^{(n)}$ is tridiagonal.
d) Suppose that A is an $n \times n$ invertible matrix which admits an LUfactorization without pivoting. Partition A into:

$$
A=\left(\begin{array}{lll}
A_{1,1} & & A_{1,2} \\
& & \\
A_{2,1} & & A_{2,2}
\end{array}\right)
$$

with $A_{1,1}$ being a $(k-1) \times(k-1)$ matrix. Knowing that $A_{1,1}$ is invertible (why?), show that the current active array which is the $(n-k+1) \times(n-k-1)$ matrix $A_{k}=\left(a_{i, j}^{(k)}\right), i, j=k, \ldots, n$ is given by:

$$
A_{k}=A_{2,2}-A_{2,1} A_{2,2}^{-1} A_{1,2}
$$

Assume now that in addition to A being invertible and admitting an LUfactorization without pivoting, A is Hermitian. Use this formula to deduce that A_{k} is also Hermitian, for $k=1, \ldots, n$.

Q2) (a) Prove the de la Vallée-Poussin lemma: Suppose that f is a real function on the interval $[a, b]$. Let Ω_{n} be the set of all polynomials of degree at most n on $[a, b]$ and let $P \in \Omega_{n}$. Suppose there exist $n+2$ partition points

$$
\begin{equation*}
a \leq x_{1}<x_{2}<\ldots<x_{n+2} \leq b \tag{*}
\end{equation*}
$$

and $n+2$ positive numbers $\lambda_{1}, \ldots, \lambda_{n+2}$ such that

$$
f\left(x_{i}\right)-P\left(x_{i}\right)=(-1)^{i+m} \lambda_{i}, \quad i=1, \ldots, n+2,
$$

for some fixed integer $m, m=0$ or $m=1$. Then

$$
\min _{Q \in \Omega_{n}}\|f-Q\|_{\infty} \geq \min \left\{\lambda_{1}, \ldots, \lambda_{n+2}\right\}
$$

Explain in your own words why the de la Vallée-Poussin lemma implies that if there exist $n+2$ points x_{1}, \ldots, x_{n+2} in the interval $[a, b]$ satisfying $(*)$ such that at these points the function f and the polynomial P satisfy that

$$
f\left(x_{i}\right)-P\left(x_{i}\right)=(-1)^{i+m}\|f-P\|_{\infty}, \quad i=1, \ldots, n+2
$$

for some fixed integer $m, m=0$ or $m=1$, then P is the best approximation polynomial for f in Ω_{n}.
(b) If the function $f(x)=e^{x}$ is approximated on the interva; $[-1,1]$ by a 4 -th order Maclaurin polynomial, the resulting approximation is given by:

$$
P_{4}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}
$$

and the error is given by:

$$
R_{4}(x)=\frac{x^{5} f^{(5)}\left(\xi_{x}\right)}{5!}
$$

for some point $\xi_{x} \in[-1,1]$. Show that if $P_{4}(x)$ is now best approximated by a polynomial, call it $Q_{3}(x)$, of order at most 3 on the interval $[-1,1]$, then

$$
\left|f(x)-Q_{3}(x)\right| \leq\left|f(x)-R_{4}(x)\right|+\left|R_{4}(x)-Q_{3}(x)\right| \leq 0.03
$$

(c) Let S be the natural cubic spline that interpolates $f \in C^{2}[a, b]$ at the knots:

$$
a=x_{0}<x_{1}<\ldots<x_{N}=b .
$$

Show that

$$
\int_{a}^{b}\left(S^{\prime \prime}(x)\right)^{2} d x \leq \int_{a}^{b}\left(f^{\prime \prime}(x)\right)^{2} d x
$$

and give an interpretation of this result.
3) (a) Let $\sum_{k=1}^{n} \alpha_{k} f_{k}$ be a Guassian quadrature scheme based on a system of orthogonal polynomials $\left\{p_{j}\right\}_{j=1}^{n}$ (with respect to the weight function $w(x)=1)$ on the interval $[a, b]$. Show that the weights $\alpha_{1}, \ldots, \alpha_{n}$ are positive.
(b) The Simpson's Three-Eighths quadrature rule for approximating $\int_{a}^{b} f(x) d x$ is a closed Newton-Cotes rule obtained by diving the interval $[a, b]$ into 3 subintervals of equal length h and approximation f on $[a, b]$ by an interpolation polynomial on the 4 points x_{0}, x_{1}, x_{2}, and x_{3}, where $x_{0}=a$, $x_{3}=b$, and $h=x_{i}-x_{i-1}$, for $i=1,2,3$. Show that Simpson's ThreeEighths rule is give by:

$$
I_{4}(f)=\frac{3 h}{8}\left[f_{0}+3 f_{1}+3 f_{2}+f_{3}\right] .
$$

For approximating $\int_{0}^{\pi} \sin (x) d x=2$, compare the usual Simpson's rule with his Three-Eighths rule.

Without carrying out a detailed error analysis for Simpson's ThreeEighths rule and comparing it with the error analysis for his usual rule, in what sense can we regard the the Three-Eighths rule to be superior to the usual one. Justify your answer.

