MEASURE AND INTEGRATION (MATH 5111) QUALIFYING EXAM - JANUARY 2010

Below (X, \mathcal{F}, μ) denotes a general measure space, and $(\mathbb{R}, \mathcal{L}, d x)$ denotes the real-line equipped with the Lebesgue σ-algebra and the Lebesgue measure.

1. Recall that a sequence $\left(f_{n}: n \in \mathbb{N}\right)$ of real-valued \mathcal{F}-measurable functions on X converges μ-almost uniformly to a function f if for every $\epsilon>0$ there exists $E \in \mathcal{F}$ such that $\mu(E)<\epsilon$ and on $X \backslash E, f_{n} \underset{n \rightarrow \infty}{\rightarrow} f$ uniformly.
(a) Suppose that $f_{n} \underset{n \rightarrow \infty}{\rightarrow} f, \mu$-almost uniformly. Prove that $f_{n} \underset{n \rightarrow \infty}{\rightarrow} f$ in μ-measure and μ-almost surely.
(b) (Egoroff's Theorem) Assume that $\mu(X)<\infty$. Prove that if $f_{n} \underset{n \rightarrow \infty}{\rightarrow} f, \mu$-almost surely, then $f_{n} \underset{n \rightarrow \infty}{\rightarrow} f, \mu$-almost uniformly.
(c) Show by example that the condition $\mu(X)<\infty$ in part (b) could not be relaxed.
2. Calculate

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left(1+\frac{x}{n}\right)^{-n} \sin \left(\frac{x}{n}\right) d x
$$

3. For $f: \mathbb{R} \rightarrow \mathbb{R}$ and $t \in \mathbb{R}$ define a function $T_{t} f$ by letting $\left(T_{t} f\right)(x)=f(x-t)$.
(a) Let $p \in[1, \infty)$. Prove that for $f \in L^{p}(d x),\left\|T_{t} f-f\right\|_{p} \underset{t \rightarrow 0}{\rightarrow} 0$.
(b) Show by example that the claim above fails for $p=\infty$.
4. Let $p \in(1, \infty)$ and let $q \in(1, \infty]$ denote the conjugate exponent, $\frac{1}{p}+\frac{1}{q}=1$. Suppose that $f: \mathbb{R} \times \mathbb{R} \rightarrow[0, \infty]$ is a nonnegative $\mathcal{L} \times \mathcal{L}$-measurable function.
(a) (Generalized Minkowski's inequality) Let $g: \mathbb{R} \rightarrow[0, \infty]$ be a nonnegative \mathcal{L} measurable function. Prove:

$$
\iint f(x, y) g(x) d x d y \leq\|g\|_{q} \int\left(\int f(x, y)^{p} d x\right)^{1 / p} d y
$$

(b) Conclude from (a) that

$$
\left(\int\left(\int f(x, y) d y\right)^{p} d x\right)^{1 / p} \leq \int\left(\int f(x, y)^{p} d x\right)^{1 / p} d y
$$

(c) (Hardy's inequality) Let $h \in L^{p}(d x)$. Define a function $T h$ by letting

$$
(T h)(y)= \begin{cases}\frac{1}{y} \int_{0}^{y} h(x) d x & y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Prove

$$
\|T h\|_{p} \leq \frac{p}{p-1}\|h\|_{p}
$$

Hint: $(T h)(y)=\int_{[0, \infty)} h(x) \mathbf{1}_{[0, y]}(x) \frac{d x}{y}=\int_{[0,1]} h(y u) d u$.
5. Determine whether each of the following statements is TRUE or FALSE and justify your answer (prove it or find a counterexample to the statement).
(a) Suppose that f is a function on $[0,1]$ which is differentiable at each point $x \in[0,1]$. Then f is absolutely continuous on $[0,1]$.
(b) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function of bounded variation and $f^{\prime}(x)=0, d x$-almost surely, then there exists $C \in \mathbb{R}$ such that $f(x)=C, d x$-almost surely.
(c) Let f be a function in $L_{l o c}^{1}(d x)$ (i.e. integrable over bounded intervals). Assume that $\left|\int_{\left[k / 2^{j},(k+1) / 2^{j}\right)} f(x) \sin x d x\right| \leq 4^{-j}$ for all $k \in \mathbb{Z}, j \in \mathbb{N}$. Then $f=0, d x$ almost surely.
(d) If (X, \mathcal{F}, μ) is a complete measure space, then so is the product space ($X \times X, \mathcal{F} \times$ $\mathcal{F}, \mu \times \mu)$. (Recall that a measure space is complete if all subsets of sets of measure 0 are measurable).
(e) If $f:[0,1] \rightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ is Riemann integrable on $[\epsilon, 1]$ for every $\epsilon \in(0,1)$ and the improper Riemann integral $\lim _{\epsilon}{ }^{\prime} \int_{\epsilon}^{1} f(x) d x$ exists (and is finite) then $f \in L^{1}([0,1], d x)$.

