MEASURE AND INTEGRATION (MATH 5111) QUALIFYING EXAM - JANUARY 2010

Below (X, \mathcal{F}, μ) denotes a general measure space, and $(\mathbb{R}, \mathcal{L}, dx)$ denotes the real-line equipped with the Lebesgue σ -algebra and the Lebesgue measure.

- 1. Recall that a sequence $(f_n : n \in \mathbb{N})$ of real-valued \mathcal{F} -measurable functions on X converges μ -almost uniformly to a function f if for every $\epsilon > 0$ there exists $E \in \mathcal{F}$ such that $\mu(E) < \epsilon$ and on $X \setminus E$, $f_n \xrightarrow[n \to \infty]{} f$ uniformly.
 - (a) Suppose that $f_n \xrightarrow[n \to \infty]{} f$, μ -almost uniformly. Prove that $f_n \xrightarrow[n \to \infty]{} f$ in μ -measure and μ -almost surely.
 - (b) (Egoroff's Theorem) Assume that $\mu(X) < \infty$. Prove that if $f_n \xrightarrow[n \to \infty]{} f$, μ -almost surely, then $f_n \xrightarrow[n \to \infty]{} f$, μ -almost uniformly.
 - (c) Show by example that the condition $\mu(X) < \infty$ in part (b) could not be relaxed.
- 2. Calculate

$$\lim_{n \to \infty} \int_0^\infty \left(1 + \frac{x}{n} \right)^{-n} \sin\left(\frac{x}{n}\right) dx.$$

- 3. For $f : \mathbb{R} \to \mathbb{R}$ and $t \in \mathbb{R}$ define a function $T_t f$ by letting $(T_t f)(x) = f(x t)$.
 - (a) Let $p \in [1, \infty)$. Prove that for $f \in L^p(dx)$, $||T_t f f||_p \xrightarrow[t \to 0]{} 0$.
 - (b) Show by example that the claim above fails for $p = \infty$.
- 4. Let $p \in (1, \infty)$ and let $q \in (1, \infty]$ denote the conjugate exponent, $\frac{1}{p} + \frac{1}{q} = 1$. Suppose that $f : \mathbb{R} \times \mathbb{R} \to [0, \infty]$ is a nonnegative $\mathcal{L} \times \mathcal{L}$ -measurable function.
 - (a) (Generalized Minkowski's inequality) Let $g : \mathbb{R} \to [0,\infty]$ be a nonnegative \mathcal{L} -measurable function. Prove:

$$\iint f(x,y)g(x)dxdy \le \|g\|_q \int \left(\int f(x,y)^p dx\right)^{1/p} dy$$

(b) Conclude from (a) that

$$\left(\int \left(\int f(x,y)dy\right)^p dx\right)^{1/p} \le \int \left(\int f(x,y)^p dx\right)^{1/p} dy$$

(c) (Hardy's inequality) Let $h \in L^p(dx)$. Define a function Th by letting

$$(Th)(y) = \begin{cases} \frac{1}{y} \int_0^y h(x) dx & y > 0\\ 0 & \text{otherwise.} \end{cases}$$

CONTINUED ON NEXT PAGE

Prove

$$||Th||_p \le \frac{p}{p-1} ||h||_p.$$

Hint: $(Th)(y) = \int_{[0,\infty)} h(x) \mathbf{1}_{[0,y]}(x) \frac{dx}{y} = \int_{[0,1]} h(yu) du.$

- 5. Determine whether each of the following statements is TRUE or FALSE and justify your answer (prove it or find a counterexample to the statement).
 - (a) Suppose that f is a function on [0, 1] which is differentiable at each point $x \in [0, 1]$. Then f is absolutely continuous on [0, 1].
 - (b) If $f : \mathbb{R} \to \mathbb{R}$ is a function of bounded variation and f'(x) = 0, dx-almost surely, then there exists $C \in \mathbb{R}$ such that f(x) = C, dx-almost surely.
 - (c) Let f be a function in $L^1_{loc}(dx)$ (i.e. integrable over bounded intervals). Assume that $|\int_{[k/2^j,(k+1)/2^j)} f(x) \sin x dx| \leq 4^{-j}$ for all $k \in \mathbb{Z}, j \in \mathbb{N}$. Then f = 0, dx-almost surely.
 - (d) If (X, \mathcal{F}, μ) is a complete measure space, then so is the product space $(X \times X, \mathcal{F} \times \mathcal{F}, \mu \times \mu)$. (Recall that a measure space is complete if all subsets of sets of measure 0 are measurable).
 - (e) If $f: [0,1] \to \mathbb{R} \cup \{-\infty, +\infty\}$ is Riemann integrable on $[\epsilon, 1]$ for every $\epsilon \in (0,1)$ and the improper Riemann integral $\lim_{\epsilon \searrow 0} \int_{\epsilon}^{1} f(x) dx$ exists (and is finite) then $f \in L^{1}([0,1], dx)$.