Abstract Algebra Prelim

- 1. Let R be a commutative ring with identity, and let M be an R-module. Recall the annihilator of M is $\operatorname{Ann}(M) = \{r \in R \mid rm = 0 \text{ for all } m \in M\}$. For any ideal I in R, show M is an R/I-module by the rule $(r+I) \cdot m = rm$ if and only if $I \subseteq \operatorname{Ann}(M)$.
- 2. Let R be a commutative ring with identity, and let I and J be ideals in R. Recall that $I + J = \{r + r' \mid r \in I, r' \in J\}$, and IJ is the ideal generated by all products rr' with $r \in I$ and $r' \in J$.
 - (a) Prove that if I + J = R then $IJ = I \cap J$.
 - (b) Assuming that I + J = R, show that for any a and b in R there exists some $x \in R$ such that $x \equiv a \mod I$ and $x \equiv b \mod J$. (Recall that $x \equiv a \mod I$ if and only if $x a \in I$.)
- 3. Let $\varphi \colon \mathbf{Z} \to \operatorname{Aut}(\mathbf{Z})$ by $n \mapsto \varphi_n$, where $\varphi_n(a) = (-1)^n a$. Define the semi-direct product group $G = \mathbf{Z} \rtimes_{\varphi} \mathbf{Z}$.
 - (a) Write down the group law and the formula for inverses in G.
 - (b) Find the center of G.
- 4. In a commutative ring R, an ideal Q is called *primary* if whenever any a and b in R satisfy $ab \in Q$ and $a \notin Q$, we have $b^n \in Q$ for some integer $n \ge 1$. (Equivalently, if $ab \equiv 0 \mod Q$ and $a \notin 0 \mod Q$, we have $b^n \equiv 0 \mod Q$ for some integer $n \ge 1$. That is, in the ring R/Q any zero divisor is nilpotent.) Show that the nonzero primary ideals in a PID are the ideals of the form (p^n) where p is a prime element and n is a positive integer. You may use that a PID is a UFD.
- 5. In \mathbf{R}^3 a line-plane pair is a pair of subspaces (V_1, V_2) where $V_1 \subset V_2$, dim $V_1 = 1$, and dim $V_2 = 2$. The standard line-plane pair in \mathbf{R}^3 is $(\mathbf{R}e_1, \mathbf{R}e_1 + \mathbf{R}e_2)$ where $e_1 = (1, 0, 0)$ and $e_2 = (0, 1, 0)$. Let \mathcal{S} be the set of all line-plane pairs in \mathbf{R}^3 .
 - (a) The group $GL(3, \mathbf{R})$ of invertible 3×3 real matrices acts on \mathcal{S} by

$$A \cdot (V_1, V_2) = (A(V_1), A(V_2)),$$

where $A \in GL(3, \mathbf{R})$ and $(V_1, V_2) \in S$. Prove that the stabilizer subgroup of the standard line-plane pair is the group of invertible upper-triangular matrices in $GL(3, \mathbf{R})$ (with arbitrary non-zero entries on the diagonal).

- (b) Prove that the $GL(3, \mathbf{R})$ -action on S is transitive.
- 6. Give examples as requested, with brief justification.
 - (a) A maximal ideal in $\mathbf{C}[x, y]$ which contains the ideal $(xy, x^2 1)$.
 - (b) A ring R and ideals I and J in R such that $IJ \neq I \cap J$.
 - (c) A generator of the group of characters of $(\mathbf{Z}/7\mathbf{Z})^{\times}$.
 - (d) A finite nonzero $\mathbf{Z}[i]$ -module.