1. Let R be a commutative ring with identity, and let M be an R-module. Recall the annihilator of M is $\operatorname{Ann}(M)=\{r \in R \mid r m=0$ for all $m \in M\}$. For any ideal I in R, show M is an R / I-module by the rule $(r+I) \cdot m=r m$ if and only if $I \subseteq \operatorname{Ann}(M)$.
2. Let R be a commutative ring with identity, and let I and J be ideals in R. Recall that $I+J=\left\{r+r^{\prime} \mid r \in I, r^{\prime} \in J\right\}$, and $I J$ is the ideal generated by all products $r r^{\prime}$ with $r \in I$ and $r^{\prime} \in J$.
(a) Prove that if $I+J=R$ then $I J=I \cap J$.
(b) Assuming that $I+J=R$, show that for any a and b in R there exists some $x \in R$ such that $x \equiv a \bmod I$ and $x \equiv b \bmod J .($ Recall that $x \equiv a \bmod I$ if and only if $x-a \in I$.)
3. Let $\varphi: \mathbf{Z} \rightarrow \operatorname{Aut}(\mathbf{Z})$ by $n \mapsto \varphi_{n}$, where $\varphi_{n}(a)=(-1)^{n} a$. Define the semi-direct product group $G=\mathbf{Z} \rtimes_{\varphi} \mathbf{Z}$.
(a) Write down the group law and the formula for inverses in G.
(b) Find the center of G.
4. In a commutative ring R, an ideal Q is called primary if whenever any a and b in R satisfy $a b \in Q$ and $a \notin Q$, we have $b^{n} \in Q$ for some integer $n \geq 1$. (Equivalently, if $a b \equiv 0 \bmod Q$ and $a \not \equiv 0 \bmod Q$, we have $b^{n} \equiv 0 \bmod Q$ for some integer $n \geq 1$. That is, in the ring R / Q any zero divisor is nilpotent.) Show that the nonzero primary ideals in a PID are the ideals of the form $\left(p^{n}\right)$ where p is a prime element and n is a positive integer. You may use that a PID is a UFD.
5. In \mathbf{R}^{3} a line-plane pair is a pair of subspaces $\left(V_{1}, V_{2}\right)$ where $V_{1} \subset V_{2}, \operatorname{dim} V_{1}=1$, and $\operatorname{dim} V_{2}=2$. The standard line-plane pair in \mathbf{R}^{3} is $\left(\mathbf{R} e_{1}, \mathbf{R} e_{1}+\mathbf{R} e_{2}\right)$ where $e_{1}=(1,0,0)$ and $e_{2}=(0,1,0)$. Let \mathcal{S} be the set of all line-plane pairs in \mathbf{R}^{3}.
(a) The group GL $(3, \mathbf{R})$ of invertible 3×3 real matrices acts on \mathcal{S} by

$$
A \cdot\left(V_{1}, V_{2}\right)=\left(A\left(V_{1}\right), A\left(V_{2}\right)\right)
$$

where $A \in \operatorname{GL}(3, \mathbf{R})$ and $\left(V_{1}, V_{2}\right) \in \mathcal{S}$. Prove that the stabilizer subgroup of the standard line-plane pair is the group of invertible upper-triangular matrices in $G L(3, \mathbf{R})$ (with arbitrary non-zero entries on the diagonal).
(b) Prove that the GL $(3, \mathbf{R})$-action on \mathcal{S} is transitive.
6. Give examples as requested, with brief justification.
(a) A maximal ideal in $\mathbf{C}[x, y]$ which contains the ideal $\left(x y, x^{2}-1\right)$.
(b) A ring R and ideals I and J in R such that $I J \neq I \cap J$.
(c) A generator of the group of characters of $(\mathbf{Z} / 7 \mathbf{Z})^{\times}$.
(d) A finite nonzero $\mathbf{Z}[i]$-module.

