MATH 5410, Preliminary Exam

DEPARTMENT OF MATHEMATICS University of Connecticut

January, 2011

NAME:	SIGNATURE:

- 1. a) What is the definition of a self-adjoint operator from a Hilbert space H to itself;
 - b) Give an example of a self-adjoint operator for $H = L^2([0,1])$ and explain;
 - c) Prove that eigenvalues of a self-adjoint operator must be real.
- **2.** a) What is the definition of weak convergence of a sequence $\{x_n\}$ in a Hilbert space H;
 - b) Prove that a strongly convergent sequence is also a weakly convergent sequence in H;
 - c) Give an example of a weakly convergent sequence which is NOT strongly convergent in l^2 and explain;
- **3.** a) Give the definition of the limit of a sequence of distributions $\{f_n\}_1^{\infty}$ in R as $n \to \infty$.
 - b) Let

$$f(x) = e^{-x^2}, f_n(x) = n f(nx), \forall x \in \mathbb{R}, n = 1, 2, \dots$$

How do you interpret function $f_n(x)$ as a distribution f_n in R?

c) Find the limit of $\{f_n\}_1^{\infty}$ as a sequence of distributions as $n \to \infty$.

(You may use the fact that $\int_R e^{-x^2} dx = \sqrt{\pi}$).

- **4.** a) Suppose f is an operator from Banach space X to itself. Give the definition of f being Fréchet differentiable at a point $x \in X$.
- b) Let X = C[0,1] with sup-norm. Let $t_i \in [0,1]$ and $v_i \in C[0,1]$, and define $f(x) = \sum_{i=1}^n (x(t_i)^2)v_i$. Prove that f is Fréchet differentiable at all points of X and find a formula for f'.
- **5.** Find a function in $C^1[0,1]$ that minimizes the integral $\int_0^1 [(u'(t))^2 + u^2(t)] dt$ with constraints u(0) = 0 and u'(1) = 1.
- **6.** Let $[u_n]$ be an orthonormal sequence in a Hilbert space and let $[\lambda_n]$ be a bounded sequence in R. Prove that the operator $Ax = \Sigma \lambda_n < x, u_n > u_n$ is compact if and only if $\lambda_n \to 0$ as $n \to \infty$.