Complex Functions Prelim, January 2011

Below D denotes the disk $D = \{z \in \mathbb{C} : |z| < 1\}$. In all cases the word "analytic" is used interchangeably with "holomorphic".

- 1. (a) State and prove Schwarz lemma.
 - (b) Let f be analytic on D with the property that f(0) = 1 and the real part of f is positive on D. Prove that

$$|f(z)| \le \frac{1+|z|}{1-|z|}.$$

- 2. In each of the cases below, determine whether there exists an analytic 1-1 mapping from U onto the complex plane. If there is, write down an explicit formula for such a mapping. Otherwise, prove that no such mapping exists.
 - (a) U = D
 - (b) $U = \{z : |z 2| < 2\} \setminus \{z : |z 1| \le 1\}.$
- 3. Compute the following integral. Give *full justification* for your reasoning.

$$\int_0^\infty \frac{x^2 + 1}{x^4 + 1} dx.$$

4. Suppose that f, φ are analytic in a domain containing D, and that f has no zeros on ∂D . State and prove a formula for the following integral using the zeros of f.

$$\frac{1}{2\pi i} \int\limits_{\partial D} \frac{f'}{f}(z)\varphi(z)dz.$$

- 5. Let f be a non constant analytic function on a domain containing 0. Assume f(0) = 0. Prove that for any $\delta > 0$ there exists $\epsilon > 0$ such that $f(\delta D) \supset \epsilon D$.
- 6. Let \mathcal{F} be the family of all functions f analytic in D such that

$$\iint_D |f(x-iy)|^2 dx dy < 1.$$

Prove that \mathcal{F} is a normal family.