Complex Functions Prelim, January 2011

Below D denotes the disk $D=\{z \in \mathbb{C}:|z|<1\}$.
In all cases the word "analytic" is used interchangeably with "holomorphic".

1. (a) State and prove Schwarz lemma.
(b) Let f be analytic on D with the property that $f(0)=1$ and the real part of f is positive on D. Prove that

$$
|f(z)| \leq \frac{1+|z|}{1-|z|}
$$

2. In each of the cases below, determine whether there exists an analytic 1-1 mapping from U onto the complex plane. If there is, write down an explicit formula for such a mapping. Otherwise, prove that no such mapping exists.
(a) $U=D$
(b) $U=\{z:|z-2|<2\} \backslash\{z:|z-1| \leq 1\}$.
3. Compute the following integral. Give full justification for your reasoning.

$$
\int_{0}^{\infty} \frac{x^{2}+1}{x^{4}+1} d x
$$

4. Suppose that f, φ are analytic in a domain containing D, and that f has no zeros on ∂D. State and prove a formula for the following integral using the zeros of f.

$$
\frac{1}{2 \pi i} \int_{\partial D} \frac{f^{\prime}}{f}(z) \varphi(z) d z
$$

5. Let f be a non constant analytic function on a domain containing 0 . Assume $f(0)=0$. Prove that for any $\delta>0$ there exists $\epsilon>0$ such that $f(\delta D) \supset \epsilon D$.
6. Let \mathcal{F} be the family of all functions f analytic in D such that

$$
\iint_{D}|f(x-i y)|^{2} d x d y<1
$$

Prove that \mathcal{F} is a normal family.

