5310 PRELIM Introduction to Geometry and Topology January 2011

You may use any result that we proved in class (unless the question directly asks you to prove this result!).

- 1. Let $f_1, f_2: X \to Y$ be continuous maps from a topological space X to a Hausdorff space Y. Show that the set S of points $\{x \in X \mid f_1(x) = f_2(x)\}$ where f_1 and f_2 are equal is a closed set.
- 2. (a) Prove the following statement.

Tube Lemma: Assume that Y is compact, and that U_{α} for $\alpha \in A$ is a collection of open subsets of $X \times Y$ that covers $\{x\} \times Y$ for some $x \in X$, i.e. $\{x\} \times Y \subset \bigcup_{\alpha \in A} U_{\alpha}$.

Then there is a finite subcollection U_1, \ldots, U_n with $U_i = U_{\alpha_i}$ for some $\alpha_i \in A$, and an open set $V \subset X$ such that U_1, \ldots, U_n covers $V \times Y$, i.e. $V \times Y \subset U_1 \cup \cdots \cup U_n$.

- (b) Prove directly from the definition that if X, Y are compact, then $X \times Y$ is compact. *Hint: Use the Tube Lemma.*
- 3. Assume that X is a path-connected space with basepoint $x_0 \in X$. Let $A \subset X$ be a path-connected subset with $x_0 \in A$. Let $p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ be a base-point preserving covering, and let $\tilde{A} = p^{-1}(A)$ be the preimage of A.

Show that if \widetilde{X} is path-connected and if the natural map $i_*: \pi_1(A) \to \pi_1(X)$ is surjective, then \widetilde{A} is path-connected.

- 4. Determine, with proof, the number of connected 2:1-coverings of the wedge sum $S^1 \vee S^1 \vee S^1$.
- 5. Let $X = [0, 1]^2 / \sim$ be the quotient of the unit square $[0, 1]^2 \subset \mathbb{R}^2$ modulo the equivalence relation generated by

$$(t,0) \sim (1,t) \sim (1-t,1) \sim (0,t)$$

for all $0 \le t \le 1$. (One could describe this via the polygon representation $\langle a | aaaa^{-1} \rangle$.)

Prove that $\pi_1(X) = \mathbb{Z}/2\mathbb{Z}$. Justify your steps carefully.

5310 PRELIM

Introduction to Geometry and Topology January 2011 (Old syllabus)

- 1. Let $f_1, f_2: X \to Y$ be continuous maps from a topological space X to a Hausdorff space Y. Show that the set S of points $\{x \in X \mid f_1(x) = f_2(x)\}$ where f_1 and f_2 are equal is a closed set.
- 2. (a) Prove the following statement.

Tube Lemma: Assume that Y is compact, and that U_{α} for $\alpha \in A$ is a collection of open subsets of $X \times Y$ that covers $\{x\} \times Y$ for some $x \in X$, i.e. $\{x\} \times Y \subset \bigcup_{\alpha \in A} U_{\alpha}$.

Then there is a finite subcollection U_1, \ldots, U_n with $U_i = U_{\alpha_i}$ for some $\alpha_i \in A$, and an open set $V \subset X$ such that U_1, \ldots, U_n covers $V \times Y$, i.e. $V \times Y \subset U_1 \cup \cdots \cup U_n$.

- (b) Prove directly from the definition that if X, Y are compact, then $X \times Y$ is compact. *Hint: Use the Tube Lemma.*
- 3. Prove that a compact subset S of a Hausdorff space X is closed. Give an example where this statement fails in case X is not Hausdorff.
- 4. Show that the product of paths is well-defined on homotopy classes.
- 5. Let $p: X \to Y$ be a covering map, let $f: B \to Y$ be a continuous map where B is connected. Prove that if two lifts $f_1, f_2: B \to X$ of f agree at a single point $b \in B$, then $f_1 = f_2$.