
MATH 5510(313) January 2011 PRELIMINARY EXAMINATION

INSTRUCTIONS: Answer three out of six questions
You do not have to prove results which you rely upon, just state them clearly.

Good luck!

Q1) Answer 4 out of 5 questions (a), (b), (c), (d), (e).

(a) Derive the recurrence relation Tn+1(x) = 2xTn(x) − Tn−1(x) for the Chebyshev polyno-
mials:

Tn(x) = cos(n cos−1 x), n = 0, 1, ....

and prove that T̂n(x) = (1/2n−1)Tn(x) is a monic polynomial (that is, the leading coef-
ficient is 1).

(b) Derive the formula for all the zeros of Tn(x).

(c) Derive the formula for all the extrema of Tn(x) in the closed interval [−1, 1].

(d) Prove that T̂n(x) has minimal infinity norm among all monic polynomials of degree n on
the interval [−1, 1]. Moreover, show that ‖T̂n(x)‖∞ = 1/2n−1, where ‖ · ‖∞ denotes the
maximum norm of a function on the interval [−1, 1].

(e) Prove that Chebyshev polynomials are orthogonal with respect to the inner product in
Πn defined by

< a(x), b(x) >=

∫
1

−1

a(x)b(x)√
1 − x2

dx.

Q2) Answer 3 out of 3 questions (a), (b), (c).

(a) Prove that the Householder reflection matrix P = I − 2ww∗ (with w∗w = 1) is unitary
and that P 2 = I.

(b) For a given vector x explain how to find w such that

Px = ke1

with some k. Derive explicit formulas for w and k.

(c) Describe how, for a real matrix A, a sequence of Housholder reflections can be used to
compute the QR factorization A = QR with orthogonal Q and upper triangular R.

Q3) Answer 4 out of 5 questions (a), (b), (c), (d), (e).

Derive a fast O(n log n) FFT-based algorithm for the polynomial multiplication problem, that
is, given coefficients of two polynomials a(x), b(x) , compute the coefficients of their product
c(x) = a(x)b(x).



(a) Prove that the above polynomial multiplication problem is equivalent to the problem of
multiplying a lower triangular Toeplitz matrix by a vector.

(b) Show how to ”embed” a Toeplitz matrix into a circulant matrix, and justify the fact
that the problem of (a) (that is, of multiplying a lower triangular Toeplitz matrix by a
vector) can be solved via multiplying a circulant matrix by a vector.

(c) Prove that any circulant matrix C admits a factorization

C = FDF ∗

where F is the DFT matrix and D is a diagonal matrix.

(d) Deduce the formula for the diagonal entries of D.

(e) Describe ”in words” how the results of (a), (b), (c), and (d) allow us to compute the
coefficients of c(x) = a(x)b(x) in O(n log n) arithmetic operations.

Q4) Answer 4 out of 5 questions (a), (b), (c), (d), (e).

(a) Prove that a positive definite matrix (partitioned as follows:)

A =

[
d1 a∗21
a21 A22

]

admits a factorization

A =

[
1 0

1

d1
a21 I

] [
d1 0
0 S

] [
1 1

d1
a∗21

0 I

]

with some S, and deduce the formula for S.

(b) Prove that S is also positive definite.

(c) Use the results of (a) and (b) to prove that a positive matrix A admits a factorization

A = LDL∗,

where L is unit lower triangular (i.e., with 1’s on the main diagonal), and D is a diagonal
matrix with positive diagonal entries.

(d) Use the result of (c) to prove that a positive matrix A is always invertible and that its
inverse is also a positive definite matrix.

(e) Use the result of (c) to prove that all the determinants of leading k × k submatrices of A
are positive (k = 1, 2, . . . , n).

Q5) Answer 3 out of 4 questions (a), (b), (c), (d).

(a) Let ‖x‖ denotes the usual Euclidean norm
√

xT x. Prove that the linear least squares
problem

min
x∈Rn

‖y − Ax‖

with a m × n matrix A has at least one minimal point x0.

(b) Prove that if x1 is another minimum point, then Ax0 = Ax1. The residual r := y − Ax
is uniquely determined and satisfies the equation AT r = 0.
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(c) Prove that Every minimum point x0 is also a solution of normal equations

AT Ax = AT y

and conversely.

(d) Explain how the orthogonalization technique (that is, computing for the m×n matrix A
the factorization A = QR with m×m orthogonal matrix Q and m×n upper triangular
matrix R) yields an efficient algorithm for solving the above least squares problem.

Q6) Answer 3 out of 4 questions (a), (b), (c), (d).

(a) Let T be an n × n positive definite matrix. Relate the factorization

T Ũ = L̃ (1)

to the standard LDL∗ factorization of T to prove that (1) always exists and it is unique.
Here Ũ is a unit (i.e., with 1’s on the main diagonal) upper triangular matrix, and L̃ is
a lower triangular matrix.

(b) Let 〈·, ·〉 be an arbitrary inner product in the vector space Πn (of all polynomials whose
degree does not exceed n). Let T be a positive definite moment matrix, i.e., T =
[〈xi, xj〉]ni,j=0. Let

uk(x) = u0,k + u1,kx + u2,kx
2 + . . . + uk−1,kx

k−1 + xk. (2)

be the k-th orthogonal polynomial with respect to 〈·, ·〉. Prove that the k-th column of
the matrix Ũ of (a) contains the coefficients of uk(x) as in

Ũ =




1 u0,1 u0,2 u0,3 · · · · · · u0,n

0 1 u1,2 u1,3 · · · · · · u1,n

0 0 1 u2,3 · · · · · · u2,n

... 0 1 · · · · · · u3,n

...
. . .

. . .
...

...
. . . 1 un−1,n

0 · · · · · · 0 1




.

(c) Assuming now that the moment matrix T has Toeplitz structure derive the so-called
Levinson algorithm, that is, an algorithm to compute the columns of Ũ based on the
formula (deduce it) that relates the k-th column uk of U to its ”predecessor” uk−1

(k = 2, 3, . . . , n).

Hint: Use the fact (no need to prove it) that Toeplitz moment matrices T have the
following property: if

T




x1

x2

x3

...
xn−2

xn−1

xn




=




y1

y2

y3

...
yn−2

yn−1

yn



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then

T




x∗

n

x∗

n−1

x∗

n−2

...
x∗

3

x∗

2

x∗

1




=




y∗n
y∗n−1

y∗n−2

...
y∗3
y∗2
y∗1




(d) Prove that the algorithm of (c) uses O(n2) arithmetic operations.
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