Measure and Integration Prelim, January 2011

- 1. Let $f:[0,1] \to \mathbb{R}$ be bounded.
 - (a) Show that the set where f is continuous is Lebesgue measurable (even if f is not Lebesgue measurable).
 - (b) Show that if f is not continuous on a set of full Lebesgue measure, then f is not Riemann integrable.

Hint: consider the standard partition of [0, 1] into 2^n subintervals, and define $F_n(x)$ to be the sup of f over the interval containing x and define $f_n(x)$ to be the inf of f over this interval.

- 2. Let (X, \mathcal{F}, μ) be a measure space. Suppose that f is a measurable nonnegative function satisfying $\int f d\mu = 1$. Compute $\lim_{n \to \infty} \int n \log \left(1 + \left(\frac{f(x)}{n}\right)^{\alpha}\right) d\mu(x)$ in three different cases:
 - (a) $0 < \alpha < 1$
 - (b) $\alpha = 1$
 - (c) $\alpha > 1$

Justify your answer in each case.

Hint: writing $n = n^{\alpha} n^{1-\alpha}$, and the inequalities $\log(1+u) \leq u$ and $1+u^{\alpha} \leq (1+u)^{\alpha}$ for $u \geq 0, \alpha \geq 1$ may be useful.

- 3. (a) Suppose $p, q \in (1, \infty)$ satisfy 1/p + 1/q = 1, and $a, b \in (0, \infty)$. Prove that $ab \leq a^p/p + b^q/q$. Hint: it may help to write the inequality in terms of $s = p \log a$ and $t = q \log b$.
 - (b) State and prove Hölder's inequality for $p, q \in (1, \infty)$. Hint: first show that it is sufficient to prove the case where $||f||_p = ||g||_q = 1$, then use (a).
- 4. Let $f(x, y) \in L^1(Q)$ where $Q = [0, 1] \times [0, 1]$ is the unit square in \mathbb{R}^2 . Suppose that for any continuous function g(y) on [0, 1] we know

$$\int f(x,y)g(y) \, dy = 0 \text{ for almost every } x \in [0,1]$$

Prove that f = 0 a.e. on Q.