Measure and Integration Prelim, January 2011

1. Let $f:[0,1] \rightarrow \mathbb{R}$ be bounded.
(a) Show that the set where f is continuous is Lebesgue measurable (even if f is not Lebesgue measurable).
(b) Show that if f is not continuous on a set of full Lebesgue measure, then f is not Riemann integrable.

Hint: consider the standard partition of $[0,1]$ into 2^{n} subintervals, and define $F_{n}(x)$ to be the sup of f over the interval containing x and define $f_{n}(x)$ to be the inf of f over this interval.
2. Let (X, \mathcal{F}, μ) be a measure space. Suppose that f is a measurable nonnegative function satisfying $\int f d \mu=1$. Compute $\lim _{n \rightarrow \infty} \int n \log \left(1+\left(\frac{f(x)}{n}\right)^{\alpha}\right) d \mu(x)$ in three different cases:
(a) $0<\alpha<1$
(b) $\alpha=1$
(c) $\alpha>1$

Justify your answer in each case.
Hint: writing $n=n^{\alpha} n^{1-\alpha}$, and the inequalities $\log (1+u) \leq u$ and $1+u^{\alpha} \leq(1+u)^{\alpha}$ for $u \geq 0, \alpha \geq 1$ may be useful.
3. (a) Suppose $p, q \in(1, \infty)$ satisfy $1 / p+1 / q=1$, and $a, b \in(0, \infty)$. Prove that $a b \leq a^{p} / p+b^{q} / q$. Hint: it may help to write the inequality in terms of $s=p \log a$ and $t=q \log b$.
(b) State and prove Hölder's inequality for $p, q \in(1, \infty)$. Hint: first show that it is sufficient to prove the case where $\|f\|_{p}=\|g\|_{q}=1$, then use (a).
4. Let $f(x, y) \in L^{1}(Q)$ where $Q=[0,1] \times[0,1]$ is the unit square in \mathbb{R}^{2}. Suppose that for any continuous function $g(y)$ on $[0,1]$ we know

$$
\int f(x, y) g(y) d y=0 \text { for almost every } x \in[0,1]
$$

Prove that $f=0$ a.e. on Q.

