1. (a) Define a p-Sylow subgroup of a finite group.
(b) For each prime p, prove that any two p-Sylow subgroups of a finite group are conjugate. (That is, prove the second part of the Sylow theorems.)
2. Let the additive group \mathbf{Z} act on the additive group $\mathbf{Z}\left[\frac{1}{3}\right]=\left\{a / 3^{k}: a \in \mathbf{Z}, k \geq 0\right\}$ by $\varphi_{n}(r)=3^{n} r$ for $n \in \mathbf{Z}$ and $r \in \mathbf{Z}\left[\frac{1}{3}\right]$. Set $G=\mathbf{Z}\left[\frac{1}{3}\right] \rtimes_{\varphi} \mathbf{Z}$, a semi-direct product.
(a) Compute the product $(r, m)(s, n)$ and the inverse $(r, m)^{-1}$ in the group G.
(b) Show G is generated by $(1,0)$ and $(0,1)$.
3. Let R be a ring with identity, possibly noncommutative. Let I and J be two-sided ideals in R. Define $I J$ to be the set of finite sums $a_{1} b_{1}+\cdots+a_{n} b_{n}=\sum_{k=1}^{n} a_{k} b_{k}$ where $n \geq 1, a_{k} \in I$, and $b_{k} \in J$.
(a) Prove that $I J$ is a two-sided ideal in R and that $I J \subset I \cap J$.
(b) If R is commutative and $I+J=R$ then prove $I J=I \cap J$, indicating where you use the commutativity in your proof.
(c) Let $R=(\underset{\mathbf{Z}}{\mathbf{Z} \mathbf{Z}} \mathbf{0})=\left\{\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right): a, b, c \in \mathbf{Z}\right\}$, which is a noncommutative ring under addition and multiplication of matrices. Set

$$
I=\left(\begin{array}{ll}
0 & \mathbf{Z} \\
0 & \mathbf{Z}
\end{array}\right)=\left\{\left(\begin{array}{ll}
0 & y \\
0 & z
\end{array}\right): y, z \in \mathbf{Z}\right\} \quad \text { and } \quad J=\left(\begin{array}{cc}
\mathbf{Z} & \mathbf{Z} \\
0 & 0
\end{array}\right)=\left\{\left(\begin{array}{ll}
x & y \\
0 & 0
\end{array}\right): x, y \in \mathbf{Z}\right\} .
$$

Show I and J are two-sided ideals in $R, I+J=R$, and $I J \neq I \cap J$. (This shows that part b becomes false in general if we drop its commutativity hypothesis.)
4. (a) Show the only units in $\mathbf{Z}[\sqrt{-5}]$ are ± 1.
(b) Define what it means for an integral domain R to be a unique factorization domain (UFD) and use the equation $2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$ to show $\mathbf{Z}[\sqrt{-5}]$ is not a unique factorization domain.
5. Let R be a commutative ring. Show a nonzero ideal I in R is a free R-module if and only I is a principal ideal with a generator that is not a zero divisor in R. (Hint: For the direction (\Rightarrow), show a basis of I can't have more than one term in it.)
6. Give examples as requested, with brief justification.
(a) A group action which has no fixed points.
(b) The class equation for a non-abelian group that is not isomorphic to S_{3}. (Be sure to specify what the group is.)
(c) A cyclic $\mathbf{R}[X]$-module that is three-dimensional as a vector space over \mathbf{R}.
(d) A unique factorization domain (UFD) which is not a principal ideal domain (PID).

