Abstract Algebra Prelim

- 1. (a) Define a *p*-Sylow subgroup of a finite group.
 - (b) For each prime p, prove that any two p-Sylow subgroups of a finite group are conjugate. (That is, prove the second part of the Sylow theorems.)
- 2. Let the additive group \mathbf{Z} act on the additive group $\mathbf{Z}[\frac{1}{3}] = \{a/3^k : a \in \mathbf{Z}, k \ge 0\}$ by $\varphi_n(r) = 3^n r$ for $n \in \mathbf{Z}$ and $r \in \mathbf{Z}[\frac{1}{3}]$. Set $G = \mathbf{Z}[\frac{1}{3}] \rtimes_{\varphi} \mathbf{Z}$, a semi-direct product.
 - (a) Compute the product (r, m)(s, n) and the inverse $(r, m)^{-1}$ in the group G.
 - (b) Show G is generated by (1,0) and (0,1).
- 3. Let R be a ring with identity, possibly noncommutative. Let I and J be two-sided ideals in R. Define IJ to be the set of finite sums $a_1b_1 + \cdots + a_nb_n = \sum_{k=1}^n a_kb_k$ where $n \ge 1$, $a_k \in I$, and $b_k \in J$.
 - (a) Prove that IJ is a two-sided ideal in R and that $IJ \subset I \cap J$.
 - (b) If R is commutative and I + J = R then prove $IJ = I \cap J$, indicating where you use the commutativity in your proof.
 - (c) Let $R = \begin{pmatrix} \mathbf{Z} & \mathbf{Z} \\ 0 & \mathbf{Z} \end{pmatrix} = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbf{Z} \}$, which is a noncommutative ring under addition and multiplication of matrices. Set

 $I = \begin{pmatrix} 0 & \mathbf{Z} \\ 0 & \mathbf{Z} \end{pmatrix} = \{\begin{pmatrix} 0 & y \\ 0 & z \end{pmatrix} : y, z \in \mathbf{Z}\} \text{ and } J = \begin{pmatrix} \mathbf{Z} & \mathbf{Z} \\ 0 & 0 \end{pmatrix} = \{\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} : x, y \in \mathbf{Z}\}.$

Show I and J are two-sided ideals in R, I + J = R, and $IJ \neq I \cap J$. (This shows that part b becomes false in general if we drop its commutativity hypothesis.)

- 4. (a) Show the only units in $\mathbb{Z}[\sqrt{-5}]$ are ± 1 .
 - (b) Define what it means for an integral domain R to be a unique factorization domain (UFD) and use the equation $2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$ to show $\mathbb{Z}[\sqrt{-5}]$ is not a unique factorization domain.
- 5. Let R be a commutative ring. Show a nonzero ideal I in R is a free R-module if and only I is a principal ideal with a generator that is not a zero divisor in R. (Hint: For the direction (\Rightarrow) , show a basis of I can't have more than one term in it.)
- 6. Give examples as requested, with brief justification.
 - (a) A group action which has no fixed points.
 - (b) The class equation for a non-abelian group that is not isomorphic to S_3 . (Be sure to specify what the group is.)
 - (c) A cyclic $\mathbf{R}[X]$ -module that is three-dimensional as a vector space over \mathbf{R} .
 - (d) A unique factorization domain (UFD) which is not a principal ideal domain (PID).