Math 5410 Preliminary Exam Jan 2012

Jan 2012

Signature_

Name

Do all 5 problems.

1. (a) Find the Green's Function G(x, y) for operator A where

$$Ay = y'' + y$$

with y'(0) = y(1) = 0.

(b) Define $T: L^{2}(0,1) \to L^{2}(0,1)$ such that for any $f \in L^{2}(0,1)$

$$Tf(x) = \int_0^1 G(x, y) f(y) \, dy.$$

Explain what spectral theorem is and why it is applicable.

- (c) Show that $||T|| = \max\{|\lambda| : \lambda \text{ is an eigenvalue of } T\}.$
- (d) Compute ||T||.

2. Let T be a compact operator on a Hilbert space H and $\{\varphi_n : n \in N\}$ be an orthonormal system of H.

- (a) Show $\varphi_n \rightharpoonup 0$ weakly. Explain why this gives an example of weakly convergent sequence which is not strongly convergent.
- (b) Using part (a). or otherwise, show $||T\varphi_n|| \longrightarrow 0$
- 3. (a) Let λ_n be a sequence of complex numbers. Then operator S defined by $Sf = \sum_{n=1}^{\infty} \lambda_n \langle f, \varphi_n \rangle \varphi_n$ is compact iff $\lim_{n \to \infty} \lambda_n = 0$.
 - (a) Let f be an operator on a Banach space X, give the definition of f being Fréchet differentiable at a point $x \in X$.
 - (b) Define $f: C[0,1] \longrightarrow C[0,1]$ by $[f(x)](t) = x(t) + \int_0^1 (x(st))^2 ds$. Compute f'(x).

4. Let $f(x) = e^{-x^2}$, $f_n(x) = nf(nx)$, $\forall x \in R, n = 1, 2 \cdots$.

- (a) Given the definition of the limit of a sequence of distributions in R.
- (b) Find the limit of $\{f_n\}_1^\infty$ as a sequence of distributions. You may use the fact that $\int_{-\infty}^\infty e^{-x^2} dx = \sqrt{\pi}$.
- 5. (a) Give the definition of a compact linear operator from a Banach space X to itself.
 - (b) Given $X = L^2([0,1])$, find an example of compact linear opeator on X and explain why
 - (c) Given $X = L^2([0,1])$, find an example of NON compact linear opeator on X and explain why.