1. In the group $\operatorname{Aff}(\mathbf{Z} /(7))=\left\{\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right): a, b \in \mathbf{Z} /(7), a \neq 0\right\}$, compute the number of p-Sylow subgroups for each prime p dividing the order of the group.
2. Let $D_{n}=\langle r, s\rangle$ be the nth dihedral group for $n \geq 3$ (order $2 n, r^{n}=1, s^{2}=1, s r=r^{-1} s$).
(a) For any automorphism f of D_{n}, show $f(r)=r^{a}$ for some integer a such that $(a, n)=1$, and $f(s)=r^{b} s$ for some integer b.
(b) Conversely, given integers a and b such that $(a, n)=1$, show there is a unique automorphism f of D_{n} such that $f(r)=r^{a}$ and $f(s)=r^{b} s$.
3. Let F be an infinite field.
(a) If $f(X) \in F[X]$ satisfies $f(a)=0$ for all $a \in F$, then prove $f(X)=0$ in $F[X]$.
(b) If $f(X, Y) \in F[X, Y]$ satisfies $f(a, b)=0$ for all $(a, b) \in F \times F$, then prove $f(X, Y)=0$ in $F[X, Y]$.
4. (a) If a commutative ring R has exactly one maximal ideal, then prove this ideal must be $R-R^{\times}$(the complement of the units in R).
(b) Let R be the ring of rational numbers with an odd denominator: $R=\{a / b: a, b \in$ \mathbf{Z}, b odd $\}$. Describe R^{\times}and show R has a unique maximal ideal.
5. Let A be a commutative ring with identity. For an ideal I in A and $a \in A$ define

$$
(I: a)=\{c \in A: c a \subset I\} .
$$

(a) Show $(I: a)$ is an ideal in A and it contains I.
(b) If the ideals $I+A a$ and $(I: a)$ are both finitely generated then show I is finitely generated. More precisely, if $I+A a$ is generated by $x_{1}+b_{1} a, \ldots, x_{m}+b_{m} a\left(x_{i} \in I, b_{i} \in A\right)$ and $(I: a)$ is generated by y_{1}, \ldots, y_{n}, then show I is generated by $x_{1}, \ldots, x_{m}, y_{1} a, \ldots, y_{n} a$.
(c) Assume A contains an ideal that is not finitely generated. Prove A contains a prime ideal that is not finitely generated. (Hint: Use Zorn's lemma to show there is an ideal P in A that is not finitely generated and contained in no other ideal that is not finitely generated. Then use part b to show P is prime.)
6. Give examples as requested, with brief justification.
(a) A subgroup of $\mathbf{Z} \times \mathbf{Z}$ that is not equal to $a \mathbf{Z} \times b \mathbf{Z}$ for integers a and b.
(b) A group isomorphism from $\mathbf{Z} / 6 \mathbf{Z}$ to $(\mathbf{Z} / 7 \mathbf{Z})^{\times}$.
(c) A ring isomorphism from $\mathbf{R}[x] /\left(x^{4}-2\right)$ to $\mathbf{R} \times \mathbf{R} \times \mathbf{C}$.
(d) A unit in $\mathbf{Z}[x] /\left(x^{3}\right)$ other than ± 1.

