Abstract Algebra Prelim

- 1. In the group $\operatorname{Aff}(\mathbf{Z}/(7)) = \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a, b \in \mathbf{Z}/(7), a \neq 0 \}$, compute the number of *p*-Sylow subgroups for each prime *p* dividing the order of the group.
- 2. Let $D_n = \langle r, s \rangle$ be the *n*th dihedral group for $n \ge 3$ (order $2n, r^n = 1, s^2 = 1, sr = r^{-1}s$).
 - (a) For any automorphism f of D_n , show $f(r) = r^a$ for some integer a such that (a, n) = 1, and $f(s) = r^b s$ for some integer b.
 - (b) Conversely, given integers a and b such that (a, n) = 1, show there is a unique automorphism f of D_n such that $f(r) = r^a$ and $f(s) = r^b s$.
- 3. Let F be an infinite field.
 - (a) If $f(X) \in F[X]$ satisfies f(a) = 0 for all $a \in F$, then prove f(X) = 0 in F[X].
 - (b) If $f(X,Y) \in F[X,Y]$ satisfies f(a,b) = 0 for all $(a,b) \in F \times F$, then prove f(X,Y) = 0 in F[X,Y].
- 4. (a) If a commutative ring R has exactly one maximal ideal, then prove this ideal must be $R R^{\times}$ (the complement of the units in R).
 - (b) Let R be the ring of rational numbers with an odd denominator: $R = \{a/b : a, b \in \mathbb{Z}, b \text{ odd}\}$. Describe R^{\times} and show R has a unique maximal ideal.
- 5. Let A be a commutative ring with identity. For an ideal I in A and $a \in A$ define

$$(I:a) = \{c \in A : ca \subset I\}.$$

- (a) Show (I:a) is an ideal in A and it contains I.
- (b) If the ideals I + Aa and (I : a) are both finitely generated then show I is finitely generated. More precisely, if I + Aa is generated by $x_1 + b_1a, \ldots, x_m + b_ma$ $(x_i \in I, b_i \in A)$ and (I : a) is generated by y_1, \ldots, y_n , then show I is generated by $x_1, \ldots, x_m, y_1a, \ldots, y_na$.
- (c) Assume A contains an ideal that is not finitely generated. Prove A contains a prime ideal that is not finitely generated. (Hint: Use Zorn's lemma to show there is an ideal P in A that is not finitely generated and contained in no other ideal that is not finitely generated. Then use part b to show P is prime.)
- 6. Give examples as requested, with brief justification.
 - (a) A subgroup of $\mathbf{Z} \times \mathbf{Z}$ that is not equal to $a\mathbf{Z} \times b\mathbf{Z}$ for integers a and b.
 - (b) A group isomorphism from $\mathbf{Z}/6\mathbf{Z}$ to $(\mathbf{Z}/7\mathbf{Z})^{\times}$.
 - (c) A ring isomorphism from $\mathbf{R}[x]/(x^4-2)$ to $\mathbf{R} \times \mathbf{R} \times \mathbf{C}$.
 - (d) A unit in $\mathbf{Z}[x]/(x^3)$ other than ± 1 .