Math 5410 Preliminary Exam Jan 2013

Name

Signature_

Do all 5 problems.

1. (a) Find the Green's Function G(x, y) for operator A where

$$Ay = y'' + y$$

with y'(0) = y(1) = 0.

- (b) Find the operator norm of the Green's operator from L^2 to L^2 .
- 2. Let T be a bounded operator on a Hilbert space H and $\{\varphi_n : n \in N\}$ be an orthonormal system of H.
 - (a) Show $\varphi_n \rightharpoonup 0$ weakly.
 - (b) Using part (a) or otherwise, show that if T is compact, then $||T\varphi_n|| \longrightarrow 0$.
 - (c) If $\sum_{n=1}^{\infty} ||T\varphi_n||^2 < \infty$, then T is compact.
- 3. Find $(\Delta k^2) \left(\frac{1}{4\pi r}e^{-kr}\right)$ in the sense of distributional derivatives. Here $r = \sqrt{x^2 + y^2 + z^2}$.

4. Let
$$f(x) = \frac{1}{1+x^2}$$
, $f_n(x) = nf(nx)$, $\forall x \in R$, $n = 1, 2 \cdots$.

- (a) Give the definition of the limit of a sequence of distributions on $C_{0}^{\infty}\left(R\right)$.
- (b) Find the limit of $\{f_n\}_1^\infty$ as a sequence of distributions.
- 5. Let H be a Hilbert space and T be a bounded linear operator on H.
 - (a) Give the definition of the adjoint operator T^* . Show that T^* is well defined and bounded.
 - (b) Given $H = L^2([0,1])$, find an example of self-adjoint operator on H.
 - (c) Show that eigenvalues of self-adjoint operators must be real.