INSTRUCTIONS: Solve three out of four questions. You do not have to prove results which you rely upon, just state them clearly.

Good luck!

- **Q1)** Solve (a), (b), (c), (d), (e).
 - (a) Define the $n \times n$ Vandermonde matrix V_n (with the nodes x_1, x_2, \ldots, x_n), and derive the factorization:

(b) Derive the formula for the determinant of V_n . Use the condition

$$x_i \neq x_j$$
 for $i \neq j$,

to prove that the Vandermonde matrix is nonsingular.

- (c) Use (b) to prove that the following classical interpolation problem has a unique solution.
 - Given n support points

$$(x_i, f_i)$$
 $i = 1, \ldots, n;$ $(x_i \neq x_j \quad for \quad i \neq j).$

• Find a polynomial P(x) whose degree does not exceed (n-1) such that

$$P(x_i) = f_i, i = 1, \dots n.$$

- (d) Use (a) to recursively to derive the formula for factoring V_n^{-1} into a product of n-1 lower triangular matrices and n-1 upper triangular matrices. Use it to derive the Bjorck-Pereyra algorithm for solving the interpolation problem of (c).
- (e) Prove that the Bjorck-Pereyra algorithm has the cost of $O(n^2)$ operations
- **Q2)** Answer 3 out of 4 questions (a), (b), (c), (d).

(a) Let ||x|| denotes the usual Euclidean norm $\sqrt{x^Tx}$. Prove that the linear least squares problem

$$\min_{x \in \mathbb{R}^n} \|y - Ax\|$$

with a $m \times n$ matrix A has at least one minimal point x_0 .

- (b) Prove that if x_1 is another minimum point, then $Ax_0 = Ax_1$. The residual r := y Ax is uniquely determined and satisfies the equation $A^T r = 0$.
- (c) Prove that Every minimum point x_0 is also a solution of normal equations

$$A^T A x = A^T y$$

and conversely.

- (d) Explain how the orthogonalization technique (that is, computing for the $m \times n$ matrix A the factorization A = QR with $m \times m$ orthogonal matrix Q and $m \times n$ upper triangular matrix R) yields an efficient algorithm for solving the above least squares problem.
- **Q3)** Answer 3 out of 4 questions (a), (b), (c), (d).
 - (a) Let T be an $n \times n$ positive definite matrix. Relate the factorization

$$T\widetilde{U} = \widetilde{L} \tag{1}$$

to the standard LDL^* factorization of T to prove that (1) always exists and it is unique. Here \widetilde{U} is a unit (i.e., with 1's on the main diagonal) upper triangular matrix, and \widetilde{L} is a lower triangular matrix.

(b) Let $\langle \cdot, \cdot \rangle$ be an arbitrary inner product in the vector space Π_n (of all polynomials whose degree does not exceed n). Let T be a positive definite moment matrix, i.e., $T = [\langle x^i, x^j \rangle]_{i,j=0}^n$. Let

$$u_k(x) = u_{0,k} + u_{1,k}x + u_{2,k}x^2 + \dots + u_{k-1,k}x^{k-1} + x^k.$$
(2)

be the k-th orthogonal polynomial with respect to $\langle \cdot, \cdot \rangle$. Prove that the k-th column of the matrix \widetilde{U} of (a) contains the coefficients of $u_k(x)$ as in

$$\widetilde{U} = \begin{bmatrix} 1 & u_{0,1} & u_{0,2} & u_{0,3} & \cdots & \cdots & u_{0,n} \\ 0 & 1 & u_{1,2} & u_{1,3} & \cdots & \cdots & u_{1,n} \\ 0 & 0 & 1 & u_{2,3} & \cdots & \cdots & u_{2,n} \\ \vdots & & 0 & 1 & \cdots & \cdots & u_{3,n} \\ \vdots & & & \ddots & \ddots & & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots & 1 & u_{n-1,n} \\ 0 & & & & \cdots & \cdots & 0 & 1 \end{bmatrix}.$$

(c) Assuming now that the moment matrix T has Toeplitz structure derive the so-called Levinson algorithm, that is, an algorithm to compute the columns of \widetilde{U} based on the formula (deduce it) that relates the k-th column u_k of U to its "predecessor" u_{k-1} $(k=2,3,\ldots,n)$.

Hint: Use the fact (no need to prove it) that Toeplitz moment matrices T have the following property: if

$$T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-2} \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-2} \\ y_{n-1} \\ y_n \end{bmatrix}$$

then

$$T \begin{bmatrix} x_n^* \\ x_{n-1}^* \\ x_{n-2}^* \\ \vdots \\ x_{3}^* \\ x_{2}^* \\ x_{1}^* \end{bmatrix} = \begin{bmatrix} y_n^* \\ y_{n-1}^* \\ y_{n-2}^* \\ \vdots \\ y_3^* \\ y_2^* \\ y_1^* \end{bmatrix}$$

- (d) Prove that the algorithm of (c) uses $O(n^2)$ arithmetic operations.
- **Q4)** Solve (a), (b), (c)
 - (a) Use the fact that each norm $\|\cdot\|$ on \mathbb{C}^n is uniformly continuous (no need to prove the latter fact, just formulate it as a specific inequality) to prove the following theorem. All norms on \mathbb{C}^n are equivalent in the following sense. For each pair of norms $p_1(x)$ and $p_2(x)$ there are positive constants m and M satisfying

$$mp_2(x) \le p_1(x) \le Mp_2(x)$$

for all x.

(b) Prove that if F is an $n \times n$ matrix with ||F|| < 1, then $(I + F)^{-1}$ exists and satisfies

$$||(I+F)^{-1}|| \le \frac{1}{1-||F||}.$$

(c) Let A be a nonsingular $n \times n$ matrix, B = A(I + F), ||F|| < 1, and x and Δx be defined by

$$Ax = b,$$
 $B(x + \Delta x) = b.$

Use **(b)** to prove that

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{\|F\|}{1 - \|F\|}$$

as well as

$$\frac{\|\Delta x\|}{\|x\|} \leq \frac{cond(A)}{1-cond(A)\frac{\|B-A\|}{\|A\|}} \cdot \frac{\|B-A\|}{\|A\|}$$

if

$$cond(A)\frac{\|B-A\|}{\|A\|}<1.$$