
MATH 5510 January 2013 PRELIMINARY EXAMINATION

INSTRUCTIONS: Solve three out of four questions. You do not have to prove results which
you rely upon, just state them clearly.

Good luck!

Q1) Solve (a), (b), (c), (d), (e).

(a) Define the n×n Vandermonde matrix Vn (with the nodes x1, x2, . . . , xn), and derive the
factorization:

Vn =




1 0 0 · · · 0

1 1 0
...

1 0 1
. . .

...
...

...
. . .

. . . 0
1 0 · · · 0 1







1 0 · · · · · · 0

0 x2 − x1

. . .
...

...
. . . x3 − x1

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 xn − x1




︸ ︷︷ ︸
L−1

1

[
1 0

0 Vn−1

]




1 x1 x2

1
· · · xn−1

1

0 1 x1

. . .
...

...
. . . 1

. . . x2

1

...
. . .

. . . x1

0 · · · · · · 0 1




︸ ︷︷ ︸
U−1

1

(b) Derive the formula for the determinant of Vn. Use the condition

xi 6= xj for i 6= j,

to prove that the Vandermonde matrix is nonsingular.

(c) Use (b) to prove that the following classical interpolation problem has a unique solution.

• Given n support points

(xi, fi) i = 1, . . . , n; (xi 6= xj for i 6= j).

• Find a polynomial P (x) whose degree does not exceed (n−1) such that

P (xi) = fi, i = 1, . . . n.

(d) Use (a) to recursively to derive the formula for factoring V −1
n into a product of n − 1

lower triangular matrices and n − 1 upper triangular matrices. Use it to derive the
Bjorck-Pereyra algorithm for solving the interpolation problem of (c).

(e) Prove that the Bjorck-Pereyra algorithm has the cost of O(n2) operations

Q2) Answer 3 out of 4 questions (a), (b), (c), (d).



(a) Let ‖x‖ denotes the usual Euclidean norm
√

xT x. Prove that the linear least squares
problem

min
x∈Rn

‖y − Ax‖

with a m × n matrix A has at least one minimal point x0.

(b) Prove that if x1 is another minimum point, then Ax0 = Ax1. The residual r := y − Ax

is uniquely determined and satisfies the equation AT r = 0.

(c) Prove that Every minimum point x0 is also a solution of normal equations

AT Ax = AT y

and conversely.

(d) Explain how the orthogonalization technique (that is, computing for the m×n matrix A

the factorization A = QR with m×m orthogonal matrix Q and m×n upper triangular
matrix R) yields an efficient algorithm for solving the above least squares problem.

Q3) Answer 3 out of 4 questions (a), (b), (c), (d).

(a) Let T be an n × n positive definite matrix. Relate the factorization

T Ũ = L̃ (1)

to the standard LDL∗ factorization of T to prove that (1) always exists and it is unique.
Here Ũ is a unit (i.e., with 1’s on the main diagonal) upper triangular matrix, and L̃ is
a lower triangular matrix.

(b) Let 〈·, ·〉 be an arbitrary inner product in the vector space Πn (of all polynomials whose
degree does not exceed n). Let T be a positive definite moment matrix, i.e., T =
[〈xi, xj〉]ni,j=0

. Let

uk(x) = u0,k + u1,kx + u2,kx
2 + . . . + uk−1,kx

k−1 + xk. (2)

be the k-th orthogonal polynomial with respect to 〈·, ·〉. Prove that the k-th column of
the matrix Ũ of (a) contains the coefficients of uk(x) as in

Ũ =




1 u0,1 u0,2 u0,3 · · · · · · u0,n

0 1 u1,2 u1,3 · · · · · · u1,n

0 0 1 u2,3 · · · · · · u2,n

... 0 1 · · · · · · u3,n

...
. . .

. . .
...

...
. . . 1 un−1,n

0 · · · · · · 0 1




.

(c) Assuming now that the moment matrix T has Toeplitz structure derive the so-called
Levinson algorithm, that is, an algorithm to compute the columns of Ũ based on the
formula (deduce it) that relates the k-th column uk of U to its ”predecessor” uk−1

(k = 2, 3, . . . , n).
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Hint: Use the fact (no need to prove it) that Toeplitz moment matrices T have the
following property: if

T




x1

x2

x3

...
xn−2

xn−1

xn




=




y1

y2

y3

...
yn−2

yn−1

yn




then

T




x∗
n

x∗
n−1

x∗
n−2

...
x∗

3

x∗
2

x∗
1




=




y∗n
y∗n−1

y∗n−2

...
y∗
3

y∗
2

y∗
1




(d) Prove that the algorithm of (c) uses O(n2) arithmetic operations.

Q4) Solve (a), (b), (c)

(a) Use the fact that each norm ‖ · ‖ on C
n is uniformly continuous (no need to prove the

latter fact, just formulate it as a specific inequality) to prove the following theorem.

All norms on C
n are equivalent in the following sense. For each pair of norms p1(x) and

p2(x) there are positive constants m and M satisfying

mp2(x) ≤ p1(x) ≤ Mp2(x)

for all x.

(b) Prove that if F is an n × n matrix with ‖F‖ < 1, then (I + F )−1 exists and satisfies

‖(I + F )−1‖ ≤ 1

1 − ‖F‖ .

(c) Let A be a nonsingular n× n matrix, B = A(I + F ), ‖F‖ < 1, and x and ∆x be defined
by

Ax = b, B(x + ∆x) = b.

Use (b) to prove that
‖∆x‖
‖x‖ ≤ ‖F‖

1 − ‖F‖
as well as

‖∆x‖
‖x‖ ≤ cond(A)

1 − cond(A) ‖B−A‖
‖A‖

· ‖B − A‖
‖A‖

if

cond(A)
‖B − A‖

‖A‖ < 1.

Page 3


