Real Analysis Qualifying Exam, Winter 2013

Below *m* denotes the Lebesgue measure on the Lebesgue σ -algebra on the real line \mathbb{R} , and (X, \mathcal{A}, μ) denotes any sigma-finite measure space.

1. a) Give an example of a sequence of functions that converges to zero in $L^1([0,1],m)$ but not almost everywhere (a.e.).

b) Suppose that $f_n, n \in \mathbb{N}$, are in $L^1([0,1],m)$ and there exists $\delta > 0$ such that $||f_n||_{L^1} \leq n^{-1-\delta}$. Prove that f_n converges to zero a.e.

2. a) Suppose $f \in L^1(X, \mathcal{A}, \mu)$. Prove that if $\epsilon > 0$, there exists $\delta > 0$ such that

$$\int_A |f| \, d\mu < \epsilon$$

whenever $A \in \mathcal{A}$ with $\mu(A) < \delta$.

b) Suppose $f_k \to f$ in $L^1(X, \mathcal{A}, \mu)$. Prove that if $\epsilon > 0$, there exists $\delta > 0$ such that

$$\int_A |f_k| \, d\mu < \epsilon$$

whenever $k \ge 1$ and $A \in \mathcal{A}$ with $\mu(A) < \delta$.

3. a) Prove the generalized Minkowski inequality, that is, prove that if (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are sigma-finite measure spaces and $f: X \times Y \mapsto \mathbb{R}$ is $\mathcal{A} \otimes \mathcal{B}$ -measurable, then

$$\left\| \left\| f \right\|_{L^{1}(X,\mu)} \right\|_{L^{p}(Y,\nu)} \leq \left\| \left\| f \right\|_{L^{p}(Y,\nu)} \right\|_{L^{1}(X,\mu)}$$

for all p > 1.

$$\begin{aligned} \text{Hint: show that if } f &\geq 0, \ \frac{1}{p} + \frac{1}{q} = 1 \ \text{and} \ \|g\|_{L^q(Y,\mathcal{B},\nu)} = 1, \ \text{then} \\ &\int_X \left(\int_Y f(x,y)g(y)d\nu(y) \right) d\mu(x) \leq \left\| \|f(x,\cdot)\|_{L^p(Y,\mathcal{B},\nu)} \right\|_{L^1(X,\mathcal{A},\mu)} \quad \text{and} \\ &\sup_g \int_Y \left(\int_X f(x,y)d\mu(x) \right) g(y)d\nu(y) = \left\| \|f(\cdot,y)\|_{L^1(X,\mathcal{A},\mu)} \right\|_{L^p(Y,\mathcal{B},\nu)}. \end{aligned}$$

b) Assuming the generalized Minkowski inequality, show that if p > 1 and $f \in L^p([0, \infty), m)$, then the 'mean functional' of f,

$$F(y) := \frac{1}{y} \int_0^y f(t) dt = \int_0^1 f(xy) dx,$$

is also in $L^p([0,\infty),m)$ and moreover

$$\|F\|_p \le \frac{p}{p-1} \|f\|_p$$

where $\|\cdot\|_p$ stands for the $L^p([0,\infty),m)$ -norm.

Hint: consider f(xy) *as a function of two variables on* $[0, \infty) \times [0, \infty)$ *.*

4. Let f be the Cantor function, that is: for x in the Cantor set $C \subset [0,1]$, $x = \sum_{k=1}^{\infty} a_k 3^{-k}$ with $a_k \in \{0,2\}$ for all $k \in \mathbb{N}$, f is defined as $f(x) = \sum_{k=1}^{\infty} (a_k/2)2^{-k}$, f is constant on the intervals removed from [0,1] to form C, and f is continuous.

Make a sketch of function f and answer the following questions (provide brief explanations but not necessarily complete proofs):

- a) Is f uniformly continuous?
- b) Is f of bounded variation?
- c) Is f absolutely continuous?

d) Define a set function ν on [0, 1) by $\nu[a, b) = f(b) - f(a)$; does ν extend to a Borel measure, and if so, what is the Lebesgue decomposition of ν ?