Abstract Algebra Prelim

- 1. If $g \in G$ has order $m, h \in G$ has order n, m and n are relatively prime and gh = hg, prove gh has order mn.
- 2. Show that there are only two groups of order 21 up to isomorphism, using semidirect products.
- 3. Let G be a finite abelian group, H a subgroup of G, and $\chi: H \to \mathbb{C}^{\times}$ a character on H. Show χ can be extended to a character on G.
- 4. Let A and B be commutative rings. Show every ideal in the ring $A \times B$ has the form $I \times J$ where I is an ideal in A and J is an ideal in B. Hint: (1,0)(x,y) = (x,0).
- 5. (a) Show F[x] is a Euclidean domain, where F is a field.
 - (b) Show every Euclidean domain is a PID.
- 6. Give examples as requested, with brief justification.
 - (a) An infinite abelian group in which every element has finite order.
 - (b) A permutation $\pi \in S_5$ such that $\pi(12)(345)\pi^{-1} = (35)(124)$.
 - (c) A maximal ideal M in $\mathbf{Z}[x]$ such that $\mathbf{Z}[x]/M$ has order 25.
 - (d) A Euclidean domain other than \mathbf{Z} or F[x] or F(F a field).