Qualifying Exam

1. Let $A \in \mathbb{R}^{n \times n}$. Show that if $A x=b$ has at least one solution for any $b \in \mathbb{R}^{n}$, then $A x=b$ has exactly one solution for any $b \in \mathbb{R}^{n}$.
2. Let $A \in \mathbb{R}^{n \times n}$ be any non-singular matrix and $\|\cdot\|$ be any vector norm. Show that the function $N(x)=\|A x\|$ is a vector norm.
3. Let $A \in \mathbb{R}^{n \times m}$. Define $\|A\|_{1},\|A\|_{2},\|A\|_{\infty}$, and $\|A\|_{F}$ (one, two, infinity and the Frobenius norms.) Compute them in the case of $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$.
4. (a) Suppose that $p(x)$ is a polynomial of degree at most n which has $n+1$ distinct roots. Show that $p(x) \equiv 0$. Use this result to show that the polynomial $p_{n}(x)$, of order at most n, which interpolates a function f at $n+1$ distinct points x_{0}, \ldots, x_{n} is unique. (Assume that the values which f takes at these points are f_{0}, \ldots, f_{n}, respectively.)
(b) Suppose that $f \in C^{n+1}[a, b]$ and that x_{0}, \ldots, x_{n} are $n+1$ distinct points in the interval. Let p_{n} be the interpolation polynomial for f on x_{0}, \ldots, x_{n}. Let $e_{n}(x)=f(x)-p_{n}(x)$ denote the error function on $[a, b]$. Show that for each point $x \in[a, b]$, there is a point $\xi_{x} \in(a, b)$ such that

$$
e_{n}(x)=\frac{f^{(n+1)}\left(\xi_{x}\right)}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

(c) A function f is defined on the interval $[0,1]$ and its derivatives satisfy that $\left|f^{(m)}(x)\right| \leq m$!, for all $x \in[0,1]$ and for all $m=0,1, \ldots$. For any $0<q<1$, let $p_{n}(x), n>0$, be the interpolation polynomial of degree at most n which interpolates f at $x_{0}=1, x_{1}=q, x_{2}=q^{2}, \ldots, x_{n}=q^{n}$. Show that

$$
\lim _{n \rightarrow \infty} p_{n}(0)=f(0)
$$

Taking $q=1 / 2$ and $n=10$, find an upper estimate on $\left|p_{10}(0)-f(0)\right|$.
5. (a) Find $\left\{p_{0}, p_{1}, p_{2}\right\}$ such that p_{i} is a polynomial of degree i and this set is orthogonal on $[0, \infty)$ with respect to the weight function $w(x)=e^{-x}$. (Formulas $\int x^{n} e^{-x} d x=n!$ and $0!=1$ may be useful.)
(b) Derive the two-point Gaussian formula

$$
\int_{0}^{\infty} f(x) e^{-x} d x \approx w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

i.e. find the weights and the nodes.
6. One wants to solve the equation $x+\ln x$, whose root is near 0.5 , using one or more of the methods:

$$
\text { (i) } x_{k+1}=-\ln x_{k} \quad \text { (ii) } x_{k+1}=e^{-x_{k}} \quad \text { (iii) } x_{k+1}=\frac{x_{k}+e^{-x_{k}}}{2}
$$

(a) Which of the three methods can be used?
(b) Which method should be used?
(c) Give better iterative formula.

Justify your answers.

