Qualifying Exam

- 1. Let $A \in \mathbb{R}^{n \times n}$. Show that if Ax = b has at least one solution for any $b \in \mathbb{R}^n$, then Ax = b has exactly one solution for any $b \in \mathbb{R}^n$.
- 2. Let $A \in \mathbb{R}^{n \times n}$ be any non-singular matrix and $\|\cdot\|$ be any vector norm. Show that the function $N(x) = \|Ax\|$ is a vector norm.
- 3. Let $A \in \mathbb{R}^{n \times m}$. Define $||A||_1$, $||A||_2$, $||A||_{\infty}$, and $||A||_F$ (one, two, infinity and the Frobenius norms.) Compute them in the case of $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
- 4. (a) Suppose that p(x) is a polynomial of degree at most n which has n + 1 distinct roots. Show that $p(x) \equiv 0$. Use this result to show that the polynomial $p_n(x)$, of order at most n, which interpolates a function f at n + 1 distinct points x_0, \ldots, x_n is unique. (Assume that the values which f takes at these points are f_0, \ldots, f_n , respectively.)
 - (b) Suppose that $f \in C^{n+1}[a, b]$ and that x_0, \ldots, x_n are n+1 distinct points in the interval. Let p_n be the interpolation polynomial for f on x_0, \ldots, x_n . Let $e_n(x) = f(x) p_n(x)$ denote the error function on [a, b]. Show that for each point $x \in [a, b]$, there is a point $\xi_x \in (a, b)$ such that

$$e_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n).$$

(c) A function f is defined on the interval [0,1] and its derivatives satisfy that $|f^{(m)}(x)| \leq m!$, for all $x \in [0,1]$ and for all $m = 0, 1, \ldots$ For any 0 < q < 1, let $p_n(x)$, n > 0, be the interpolation polynomial of degree at most n which interpolates f at $x_0 = 1$, $x_1 = q$, $x_2 = q^2$, \ldots , $x_n = q^n$. Show that

$$\lim_{n \to \infty} p_n(0) = f(0)$$

Taking q = 1/2 and n = 10, find an upper estimate on $|p_{10}(0) - f(0)|$.

- 5. (a) Find $\{p_0, p_1, p_2\}$ such that p_i is a polynomial of degree *i* and this set is orthogonal on $[0, \infty)$ with respect to the weight function $w(x) = e^{-x}$. (Formulas $\int x^n e^{-x} dx = n!$ and 0! = 1 may be useful.)
 - (b) Derive the two-point Gaussian formula

$$\int_0^\infty f(x)e^{-x}dx \approx w_1f(x_1) + w_2f(x_2)$$

i.e. find the weights and the nodes.

6. One wants to solve the equation $x + \ln x$, whose root is near 0.5, using one or more of the methods:

(i)
$$x_{k+1} = -\ln x_k$$
 (ii) $x_{k+1} = e^{-x_k}$ (iii) $x_{k+1} = \frac{x_k + e^{-x_k}}{2}$

- (a) Which of the three methods can be used?
- (b) Which method should be used?
- (c) Give better iterative formula.

Justify your answers.