Measure and Integration Preliminary Exam, January 2014 Solve four problems. Indicate which four.

1. Let *h* be a bounded measurable function on \mathbb{R} such that

$$\lim_{x \to \pm \infty} \frac{1}{x} \int_0^x h(t) dt = 0.$$

Show that for all functions $F \in L^1(\mathbb{R})$,

$$\lim_{\lambda \to \infty} \int_{\mathbb{R}} F(t) h(\lambda t) dt = 0.$$

Does $h(t) = \cos t$ satisfy the hypothesis, hence the conclusion? Hint: Start with indicators of intervals.

2. Prove that if $f: [0, \infty) \mapsto [0, \infty)$ is non-increasing and Lebesgue integrable, then $\lim_{x \to \infty} xf(x) = 0$. Give an example of a continuous Lebesgue integrable function on $[0, \infty)$ for which $\limsup_{x \to \infty} xf(x) = \infty$.

3. Let (S, \mathcal{S}, μ) be a measure space.

(a) Prove that, if $\mu(S) < \infty$, and each $f_n, n \in \mathbb{N}$, is measurable, then

$$f_n \to 0$$
 in measure $\iff \int_S \frac{|f_n|}{1+|f_n|} d\mu \to 0.$

(b) Prove or disprove (e.g. by giving a counterexample) each of the two implications if $\mu(S) = \infty$.

4. (a) Use a real analysis theorem to show that $\sum_{k} \sum_{\ell} a_{k\ell} = \sum_{\ell} \sum_{k} a_{k\ell}$ for $a_{k\ell} \ge 0$. Then show that if $\mu_k, k \in \mathbf{N}$, are measures on (S, \mathcal{S}) , so is the set function μ given by $\mu(A) = \sum_{k=1}^{\infty} \mu_k(A), A \in \mathcal{S}$.

(b) Let $(S, \mathcal{S}) = (\mathbb{R}, \mathcal{B})$, assume $\sum_k \mu_k [-n, n]$ is finite for all n, and let $\mu_k = \lambda_k + \nu_k$ be the Lebesgue decomposition of μ_k for each k (λ_k and Lebesgue measure m are mutually singular, and ν_k is absolutely continuous w.r.t. m). Prove that if $\lambda = \sum_k \lambda_k$ and $\nu = \sum_k \nu_k$, then $\mu = \lambda + \nu$ is the Lebesgue decomposition of μ .

(c) Show that if $F_k : [a, b] \mapsto [0, \infty)$ are non-decreasing, right continuous and non-negative functions, and if $F(x) := \sum_k F_k(x) < \infty$ for all x in [a, b], then F is also right continuous (and, obviously, non-decreasing and non-negative) and

$$F'(x) = \sum_{k} F'_{k}(x)$$

for almost all x in [a, b].

5. (a) Prove the generalized Minkowski inequality, that is, prove that if (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are sigma-finite measure spaces and $f: X \times Y \mapsto \mathbb{R}$ is $\mathcal{A} \otimes \mathcal{B}$ -measurable, then

$$\left\| \|f\|_{L_1(X,\mu)} \right\|_{L_p(Y,\nu)} \le \left\| \|f\|_{L_p(Y,\nu)} \right\|_{L_1(X,\mu)}$$

for all $p \ge 1$. Hint: duality of L_p spaces and a famous inequality may help. (b) Let $\|\cdot\|_p$ stand for the $L_p(\mathbb{R})$ -norm with respect to the Lebesgue measure. Show that if p > 1 and $f \in L_p(\mathbb{R})$, then the 'mean functional' of f,

$$F(x) := \frac{1}{x} \int_0^x f(y) dy = \int_0^1 f(xt) dt$$

is also in $L_p(\mathbb{R})$ and, moreover,

$$||F||_p \le q ||f||_p$$

where q is conjugate of p, that is $p^{-1} + q^{-1} = 1$.