Measure and Integration Preliminary Exam, January 2014

Solve four problems. Indicate which four.

1. Let h be a bounded measurable function on \mathbb{R} such that

$$
\lim _{x \rightarrow \pm \infty} \frac{1}{x} \int_{0}^{x} h(t) d t=0
$$

Show that for all functions $F \in L^{1}(\mathbb{R})$,

$$
\lim _{\lambda \rightarrow \infty} \int_{\mathbb{R}} F(t) h(\lambda t) d t=0
$$

Does $h(t)=\cos t$ satisfy the hypothesis, hence the conclusion? Hint: Start with indicators of intervals.
2. Prove that if $f:[0, \infty) \mapsto[0, \infty)$ is non-increasing and Lebesgue integrable, then $\lim _{x \rightarrow \infty} x f(x)=0$. Give an example of a continuous Lebesgue integrable function on $[0, \infty)$ for which $\lim \sup x f(x)=\infty$.
3. Let (S, \mathcal{S}, μ) be a measure space.
(a) Prove that, if $\mu(S)<\infty$, and each $f_{n}, n \in \mathbb{N}$, is measurable, then

$$
f_{n} \rightarrow 0 \text { in measure } \Longleftrightarrow \int_{S} \frac{\left|f_{n}\right|}{1+\left|f_{n}\right|} d \mu \rightarrow 0
$$

(b) Prove or disprove (e.g. by giving a counterexample) each of the two implications if $\mu(S)=\infty$.
4. (a) Use a real analysis theorem to show that $\sum_{k} \sum_{\ell} a_{k \ell}=\sum_{\ell} \sum_{k} a_{k \ell}$ for $a_{k \ell} \geq 0$. Then show that if $\mu_{k}, k \in \mathbf{N}$, are measures on (S, \mathcal{S}), so is the set function μ given by $\mu(A)=\sum_{k=1}^{\infty} \mu_{k}(A), A \in \mathcal{S}$.
(b) Let $(S, \mathcal{S})=(\mathbb{R}, \mathcal{B})$, assume $\sum_{k} \mu_{k}[-n, n]$ is finite for all n, and let $\mu_{k}=\lambda_{k}+\nu_{k}$ be the Lebesgue decomposition of μ_{k} for each k (λ_{k} and Lebesgue measure m are mutually singular, and ν_{k} is absolutely continuous w.r.t. m). Prove that if $\lambda=\sum_{k} \lambda_{k}$ and $\nu=\sum_{k} \nu_{k}$, then $\mu=\lambda+\nu$ is the Lebesgue decomposition of μ.
(c) Show that if $F_{k}:[a, b] \mapsto[0, \infty)$ are non-decreasing, right continuous and non-negative functions, and if $F(x):=\sum_{k} F_{k}(x)<\infty$ for all x in $[a, b]$, then F is also right continuous (and, obviously, non-decreasing and non-negative) and

$$
F^{\prime}(x)=\sum_{k} F_{k}^{\prime}(x)
$$

for almost all x in $[a, b]$.
5. (a) Prove the generalized Minkowski inequality, that is, prove that if (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are sigma-finite measure spaces and $f: X \times Y \mapsto \mathbb{R}$ is $\mathcal{A} \otimes \mathcal{B}$-measurable, then

$$
\left\|\|f\|_{L_{1}(X, \mu)}\right\|_{L_{p}(Y, \nu)} \leq\| \| f\left\|_{L_{p}(Y, \nu)}\right\|_{L_{1}(X, \mu)}
$$

for all $p \geq 1$. Hint: duality of L_{p} spaces and a famous inequality may help.
(b) Let $\|\cdot\|_{p}$ stand for the $L_{p}(\mathbb{R})$-norm with respect to the Lebesgue measure. Show that if $p>1$ and $f \in L_{p}(\mathbb{R})$, then the 'mean functional' of f,

$$
F(x):=\frac{1}{x} \int_{0}^{x} f(y) d y=\int_{0}^{1} f(x t) d t
$$

is also in $L_{p}(\mathbb{R})$ and, moreover,

$$
\|F\|_{p} \leq q\|f\|_{p}
$$

where q is conjugate of p, that is $p^{-1}+q^{-1}=1$.

