Complex Functions Prelim, January 2015.

- Below \mathbb{D} denotes the disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$
- In all cases the word "analytic" is used interchangeably with "holomorphic".
- If you use a known result in your working you must clearly state the result and make it apparent that you have verified all hypotheses needed for that result.
- 1. Let

$$f(z) = \frac{1}{1+z^2} - \frac{z}{2-z}.$$

Write all of the Laurent series representations in z for the function f. For each representation, clearly state the region on which it is valid.

- 2. (a) State and prove the maximum principle for holomorphic functions.
 - (b) Suppose f and g are non-vanishing holomorphic functions on D which extend continuously to the closed unit disc. If |f(z)| = |g(z)| on the boundary {z : |z| = 1}, show that |f(z)| = |g(z)| on the whole disc. Hence show there is λ with |λ| = 1 such that f(z) = λg(z) for all z.
- 3. (a) Show that $|z^3 z + 1| > |z|$ when z lies on the imaginary axis in \mathbb{C} .
 - (b) Determine the number of roots of $z^3 z + 1 = ze^z$ that lie in the left half-plane in \mathbb{C} (i.e. the set z = x + iy with x < 0).
- 4. Let $\Omega \subsetneq \mathbb{C}$ be an open, simply-connected set that is not all of \mathbb{C} . Fix two points $w, z \in \Omega$ and let

$$C(\Omega, w, z) = \sup \left\{ |f'(w)| \text{ such that } f: \Omega \to \Omega \text{ is analytic and } f(w) = z \right\}$$

- (a) In the special case $\Omega = \mathbb{D}$ and w = z = 0 the value $C(\mathbb{D}, 0, 0)$ is given by a famous result. State and prove this result and give the value $C(\mathbb{D}, 0, 0)$.
- (b) Compute $C(\mathbb{D}, 0, z)$ as a function of z.
- (c) Let $\Omega \subseteq \mathbb{C}$ be an open and simply-connected set which is not all of \mathbb{C} , and suppose $w, z \in \Omega$. Prove that there is a real number $C < \infty$ so that if $f : \Omega \to \Omega$ is analytic and f(w) = z then $|f'(w)| \leq C$. (This shows $C(\Omega, w, z) < \infty$.)
- 5. If f is analytic and injective on a neighborhood of 0 and f(0) = 0, show that there is a single-valued branch of $\sqrt{f(z^2)}$ on a (possibly smaller) neighborhood of 0.