Below (X, \mathcal{F}, μ) is a σ -finite measure space.

- 1. Prove that the set of continuity points of a function $f : \mathbb{R} \to \mathbb{R}$ is G_{δ} (a countable intersection of open sets).
- 2. In this question we assume that $\mu(X) < \infty$. Suppose that $(f, f_n : n \in \mathbb{N})$ are real-valued \mathcal{F} -measurable functions satisfying
 - (a) $f_n \to f$, μ -a.e.
 - (b) $\sup_n \int |f_n|^2 d\mu < \infty$.

Prove that $\lim_{n\to\infty} \int |f_n - f| d\mu = 0.$

- 3. (a) State and prove Holder's inequality.
 - (b) Suppose that $f_1 \in L^2(\mu)$, $f_2 \in L^3(\mu)$ and $f_3 \in L^6(\mu)$. Prove that $f_1 f_2 f_3 \in L^1(\mu)$.
- 4. Let $p \in [1, \infty]$. Suppose that $\mathcal{G}_0 \subset L^p[0, 1]$ (Lebesgue measure) is dense in $L^p[0, 1]$, and let

$$\mathcal{G}_1 = \left\{ \int_0^x g(s) ds : g \in \mathcal{G}_0 \right\}.$$

Determine, according to the value of p, whether \mathcal{G}_1 is (necessarily) dense in $L^p[0, 1]$. If not, find a counterexample.

5. Let $p \in [1, \infty)$ and let f be a real-valued \mathcal{F} -measurable function. Define

$$R_p(x) = x^{p-1}\mu(\{|f| > x\}), x > 0.$$

Prove:

(a) If f ∈ L^p(μ), then lim_{x→∞} xR_p(x) = 0.
(b) f ∈ L^p(μ) if and only if R_p ∈ L¹[0,∞) (Lebesuge measure).