COMPLEX ANALYSIS PRELIM, JANUARY 2016

Denote $\mathbb{D}=\{z \in \mathbb{C} ;|z|<1\}$, and $A \backslash B=\{x \in A ; x \notin B\}$ for two sets A and B.

1. Does there exist a function f, holomorphic in $\mathbb{C} \backslash\{0\}$, such that

$$
|f(z)| \geq \frac{1}{|z|^{9 / 10}}
$$

for all $z \in \mathbb{C} \backslash\{0\}$? Prove your assertion.
2. Let $\operatorname{Aut}(\mathbb{D})$ be the group of holomorphic automorphisms of \mathbb{D} and let Id be the identity map.
(i) For each $b \in \mathbb{D}$, construct a map $\varphi \in \operatorname{Aut}(\mathbb{D}) \backslash\{\operatorname{Id}\}$ such that b is a fixed point of φ, i.e., $\varphi(b)=b$.
(ii) Does there exist a map $\psi \in \operatorname{Aut}(\mathbb{D}) \backslash\{I d\}$ such that ψ have two distinct fixed points in \mathbb{D} ? Prove your assertion.
3. Let $G=\{z \in \mathbb{C} ;|z|>2\}$ and $f(z)=1 /\left(z^{4}+1\right)$. Is there a complex differentiable function on G whose derivative is $f(z)$? Prove your assertion.
4. Let f be a holomorphic function in \mathbb{D}. Suppose that $|f(z)| \leq 1 /(1-|z|)$ for all $z \in \mathbb{D}$. Prove that

$$
\left|f^{\prime}(z)\right| \leq \frac{4}{(1-|z|)^{2}} \quad \text { for all } z \in \mathbb{D}
$$

5. How many zeros counting multiplicities does the polynomial

$$
p(z)=z^{5}+z^{3}+5 z^{2}+2
$$

have in the region $\{z \in \mathbb{C} ; 1<|z|<2\}$? Prove your assertion.
6. Let d be the distance function on the Riemann sphere $\widehat{\mathbb{C}}$ given by

$$
d(z, w)=\frac{|z-w|}{\sqrt{1+|z|^{2}} \sqrt{1+|w|^{2}}}, \quad d(z, \infty)=\frac{1}{\sqrt{1+|z|^{2}}},
$$

for all $z, w \in \mathbb{C}$.
(i) Prove that

$$
\frac{1}{2}\left|\frac{1}{z}-\frac{1}{w}\right| \leq d(z, w) \leq\left|\frac{1}{z}-\frac{1}{w}\right|
$$

for all $z, w \in \mathbb{C}$ and $|z| \geq 1,|w| \geq 1$.
(ii) Let Ω be a domain in \mathbb{C} and $\left\{f_{k}\right\}$ a sequence of holomorphic functions on Ω. Suppose that $\left\{f_{k}\right\}$ converges, with respect to d, uniformly on every compact subset of Ω to a function g which take values in $\widehat{\mathbb{C}}$. Show that either g is a holomorphic function on Ω, or $g \equiv \infty$.

