COMPLEX ANALYSIS PRELIM, JANUARY 2016

Denote $\mathbb{D} = \{z \in \mathbb{C}; |z| < 1\}$, and $A \setminus B = \{x \in A; x \notin B\}$ for two sets A and B.

1. Does there exist a function f, holomorphic in $\mathbb{C} \setminus \{0\}$, such that

$$|f(z)| \ge \frac{1}{|z|^{9/10}}$$

for all $z \in \mathbb{C} \setminus \{0\}$? Prove your assertion.

- 2. Let $\operatorname{Aut}(\mathbb{D})$ be the group of holomorphic automorphisms of \mathbb{D} and let Id be the identity map.
 - (i) For each $b \in \mathbb{D}$, construct a map $\varphi \in \operatorname{Aut}(\mathbb{D}) \setminus {\mathrm{Id}}$ such that b is a fixed point of φ , i.e., $\varphi(b) = b$.
 - (ii) Does there exist a map $\psi \in Aut(\mathbb{D}) \setminus \{Id\}$ such that ψ have two distinct fixed points in \mathbb{D} ? Prove your assertion.
- 3. Let $G = \{z \in \mathbb{C}; |z| > 2\}$ and $f(z) = 1/(z^4 + 1)$. Is there a complex differentiable function on G whose derivative is f(z)? Prove your assertion.
- 4. Let f be a holomorphic function in \mathbb{D} . Suppose that $|f(z)| \leq 1/(1-|z|)$ for all $z \in \mathbb{D}$. Prove that

$$|f'(z)| \le \frac{4}{(1-|z|)^2}$$
 for all $z \in \mathbb{D}$.

5. How many zeros counting multiplicities does the polynomial

p

$$(z) = z^5 + z^3 + 5z^2 + 2$$

have in the region $\{z \in \mathbb{C}; 1 < |z| < 2\}$? Prove your assertion.

6. Let d be the distance function on the Riemann sphere $\widehat{\mathbb{C}}$ given by

$$d(z,w) = \frac{|z-w|}{\sqrt{1+|z|^2}\sqrt{1+|w|^2}}, \quad d(z,\infty) = \frac{1}{\sqrt{1+|z|^2}},$$

for all $z, w \in \mathbb{C}$.

(i) Prove that

$$\frac{1}{2} \left| \frac{1}{z} - \frac{1}{w} \right| \le d(z, w) \le \left| \frac{1}{z} - \frac{1}{w} \right|$$

for all $z, w \in \mathbb{C}$ and $|z| \ge 1, |w| \ge 1$.

(ii) Let Ω be a domain in \mathbb{C} and $\{f_k\}$ a sequence of holomorphic functions on Ω . Suppose that $\{f_k\}$ converges, with respect to d, uniformly on every compact subset of Ω to a function g which take values in $\widehat{\mathbb{C}}$. Show that either g is a holomorphic function on Ω , or $g \equiv \infty$.