Preliminary examination - Numerical Analysis - January 2016

Instructions: Answer all 6 questions. If your answers rely upon known results, you must state those results clearly to receive credit.

1. You are given a matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Prove that for any fixed $y \in \mathbb{R}^{4}$, there exists a unique $x \in \mathbb{R}^{3}$ such that $\|y-A x\| \leq\|y-A z\|, \forall z \in \mathbb{R}^{3}$, where $\|\cdot\|$ is the Euclidean vector norm.
2. Let $f \in \mathcal{C}^{\infty}[a, b],-\infty<a<b<\infty$, be a real-valued function. A partition $\Delta \equiv\left\{a=x_{0}<x_{1}<\ldots<x_{n}=b\right\}$ is given, with $n>1$.
(a) Define the cubic spline interpolant $s(x)$ of data $\left(x_{i}, f\left(x_{i}\right)\right), i=0,1, \ldots, n$, with side conditions $s^{\prime \prime}(a)=s^{\prime \prime}(b)=0$.
(b) Prove that

$$
\int_{a}^{b}\left|s^{\prime \prime}(x)\right|^{2} d x \leq \int_{a}^{b}\left|f^{\prime \prime}(x)\right|^{2} d x
$$

3. Consider solving the linear system $A x=b$ with $b=(1,1,1)^{T}$ and

$$
A=\left(\begin{array}{ccc}
3 & -2 & 0 \\
-2 & 3 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

Let $\|\cdot\|$ be a vector norm of your choice. If z is an approximate solution with residual satisfying $\|b-A z\|=0.01$, derive a numerical upper bound for the relative error $\|x-z\| /\|x\|$.
4. Let $\phi_{j}:[a, b] \rightarrow \mathbb{R},-\infty<a<b<\infty$, for $j=0,1, \ldots, n, n \geq 1$, be polynomials satisfying

- $\phi_{j}(x)$ is a polynomial of order precisely j, for each $j=0,1, \ldots, n$,
- and the functions are L^{2}-orthonormal;

$$
\int_{a}^{b} \phi_{j}(x) \phi_{k}(x) d x=\delta_{j k}, 0 \leq j, k \leq n
$$

Let \mathbb{P}^{k} denote the space of all real-valued polynomials of order no more than $k \geq 0$.
(a) Prove that if $p \in \mathbb{P}^{k}$ with $0 \leq k<j \leq n$, then

$$
\int_{a}^{b} p(x) \phi_{j}(x) d x=0
$$

(b) Prove that the roots $x_{i}, i=1,2, \ldots, n$, of $\phi_{n}(x)$ are real, simple, and that $a<x_{i}<b$.
5. Prove that if $f \in \mathcal{C}^{2}[a, b],-\infty<a<b<\infty$, is a real-valued function, then there exists $z \in(a, b)$ such that the quadrature error for the trapezoidal rule approximation of $\int_{a}^{b} f(x) d x$ is precisely $(b-a)^{3} f^{\prime \prime}(z) / 12$.
6. Prove that

$$
\max _{a \leq x \leq b}\left|c_{n} x^{n}+\ldots+c_{1} x+c_{0}\right| \geq\left|c_{n}\right| \frac{(b-a)^{n}}{2^{2 n-1}}
$$

