Instructions and notation:

- (i) Complete all problems. Give full justifications for all answers in the exam booklet.
- (ii) Lebesgue measure on \mathbb{R} is denoted by *m* or *dx*.
- 1. (10 points) Compute

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} \, dx$$

and provide full justification for all steps in your reasoning.

- 2. (15 points) Let K be a compact interval in \mathbb{R} and $f_n : K \to \mathbb{R}$, $n \in \mathbb{N}$, be a sequence of functions.
 - (a) Suppose that the sequence $\{f_n\}$ converges a.e. on K with respect to m. Show that $\{f_n\}$ converges in m-measure.
 - (b) Must the conclusion of part (a) be true if K is not compact? Give a proof or a counterexample.
 - (c) Finally, suppose all of the f_n are differentiable and
 - i) there is $M < \infty$ such that $||f'_n||_{\infty} \le M$ for all *n*, and
 - ii) for each *n* there is x_n such that $f_n(x_n) = 0$.

Prove that there is a subsequence of the f_n that converges uniformly on K to a continuous limit function f.

3. (25 points) Let (X, μ) be a finite measure space and $f : X \to \mathbb{R}$ be measurable. Define $F : \mathbb{R} \to \mathbb{R}$ by $F(t) = \mu(\{x : f(x) < t\})$ and let ν be the associated Lebesgue-Stieltjes measure on \mathbb{R} . The goal of this problem is to prove that for a Borel function $g : \mathbb{R} \to \mathbb{R}$, the function $g \circ f$ is integrable on (X, μ) if and only if g is integrable with respect to ν and

$$\int_X g \circ f \, d\mu = \int_{\mathbb{R}} g \, d\nu. \tag{1}$$

One possible approach is to prove the results in the following steps:

- (a) If g is a Borel measurable function on \mathbb{R} prove that $g \circ f$ is measurable on X.
- (b) If g is the characteristic function of an interval [a, b) prove that equation (1) is true.
- (c) Prove that {A : equation (1) is true for the characteristic function of A} is a σ -algebra.
- (d) Prove (1) is true when g is a Borel simple function (i.e. a linear combination of characteristic functions of Borel sets).
- (e) Prove (1) is true for any Borel function g, and prove the assertion about integrability of $g \circ f$ and g.
- 4. (15 points) We say that $x \in [0, 1]$ has a decimal expansion $x = 0.d_1d_2...$ if $x = \sum_{j=1}^{\infty} d_j 10^{-j}$ with $d_j \in \{0, ..., 9\}$. Let

 $E = \{x \in [0, 1] : x \text{ has a decimal expansion } x = 0.d_1d_2... \text{ in which } d_j \neq 7 \text{ for all } j\}.$

- (a) Prove that the set of points for which every decimal expansion has $d_1 = 7$ is an open interval.
- (b) Prove that *E* is compact and has m(E) = 0.

You may use without proof the fact that the decimal expansion is unique unless x is in the countable set having two expansions $x = 0.d_1d_2... = 0.d'_1d'_2...$ with the property that there is k such that $d_j = d'_j$ for j < k, $d_k = d'_k + 1$ and $d_j = 0$, $d'_j = 9$ for j > k. (e.g. 0.5 = 0.499...)

(*Hint: First consider the set* $E_1 = \{x = 0.d_1d_2...: d_1 \neq 7\}$, then $E_2 = \{x = 0.d_1d_2...: d_1 \neq 7, d_2 \neq 7\}$, etc.)

- 5. (15 points) Let μ be a σ -finite measure and let $p \in (1, \infty)$.
 - (a) State the Riesz representation theorem for bounded linear functionals on $L^p(\mu)$ for $p \in [1, \infty)$.
 - (b) Suppose now that $p \in (1, \infty)$. For each $j \in \mathbb{N}$ let $T_j : L^p(\mu) \to \mathbb{C}$ be a bounded linear functional, and suppose that $\lim_{j\to\infty} T_jg \in \mathbb{C}$ exists for every $g \in L^p(\mu)$. Prove that the mapping $g \mapsto \lim_{j\to\infty} T_jg \in \mathbb{C}$ is a bounded linear functional on $L^p(\mu)$.

(*Hint:* If { $||T_j||_{L^p \to L^p}$: $j \in \mathbb{N}$ } is unbounded, construct $g \in L^p(\mu)$ such that $\lim T_j g = \infty$.)