Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

1. Let G be a finite group and p be a prime number.
(a) Define a p-Sylow subgroup of G and state the Sylow theorems for G.
(b) If H is a p-Sylow subgroup of G and N is a normal subgroup of G, prove $H \cap N$ is a p-Sylow subgroup of N. (Hint: Consider the order of $H \cap N$ relative to that of H and N.)
2. (a) Let p be a prime. Prove the group $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ has order $\left(p^{2}-1\right)\left(p^{2}-p\right)$.
(b) Construct a non-trivial semidirect product $(\mathbb{Z} / 3 \mathbb{Z})^{2} \rtimes_{\varphi}(\mathbb{Z} / 3 \mathbb{Z})$. That is, construct a semidirect product where $\varphi: \mathbb{Z} / 3 \mathbb{Z} \rightarrow \operatorname{Aut}\left((\mathbb{Z} / 3 \mathbb{Z})^{2}\right)$ is not trivial and explicitly describe the group law in the semidirect product. (Hint: $\operatorname{Aut}\left((\mathbb{Z} / 3 \mathbb{Z})^{2}\right) \cong \mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$.)
(c) Show the only semidirect product $(\mathbb{Z} / 7 \mathbb{Z})^{2} \rtimes_{\varphi}(\mathbb{Z} / 5 \mathbb{Z})$ is the trivial one.
3. Let $i=\sqrt{-1}$ in \mathbb{C}.
(a) Show that $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{-2}]$ are isomorphic as additive groups.
(b) Show that $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{-2}]$ are not isomorphic as rings.
4. (a) For an integral domain A, define an irreducible element of A, a prime element of A and what it means to say A is a unique factorization domain (UFD).
(b) Prove that in a UFD every irreducible element is prime.
5. Let R be an integral domain. An element $s \in R$ that is not zero and not a unit is called "special" if, in the quotient ring $R /(s)$, each coset is represented by 0 or a unit from R : for each $a \in R$ we have $a \equiv 0 \bmod (s)$ or $a \equiv u \bmod (s)$ where $u \in R^{\times}$.
(a) If $s \in R$ is special, prove that the principal ideal (s) in R is maximal.
(b) In $\mathbb{Z}[i]$ prove $1+i$ is special and 3 is not special.
(c) Prove that there are no special elements in $\mathbb{Z}[x]$. (Hint: Apply the definition of special with $a=2$ and with $a=x$.)
6. Give examples as requested, with justification.
(a) A finite group of even order that does not have a subgroup of index 2 .
(b) A generator of the character group of $\mathbb{Z} / 4 \mathbb{Z}$.
(c) An irreducible polynomial of degree 3 in $(\mathbb{Z} / 3 \mathbb{Z})[x]$.
(d) A prime factorization of 10 in $\mathbb{Z}[i]$.
