Applied Math Prelim Jan 2017

- 1. Let X, Y be normed linear space, $T: X \to Y$ be a linear transformation.
 - (a) (10 pts) T is continuous iff T maps every sequence converging to zero into a bounded sequence.
 - (b) (10 pts) T is compact iff T maps every sequence that is weakly converging to zero into a sequence which is strongly converging to zero.
 - (c) (5 pts) If T is bounded, show that $||T|| = \sup_{||x||_X \neq 0} \frac{||Tx||_Y}{||x||_X} = \sup_{||x||_X = 1} ||Tx||_Y$.
- 2. (20 pts)Find a fundamental solution of operator A defined by $A\varphi = \varphi'' + 3\varphi' + 2\varphi$. (Hint: find fundamental solution $T = \tilde{f}$ with $\operatorname{supp} f \subset [0, \infty)$).
- 3. (15 pts) Let A be a compact operator on a normed linear space. If I A is surjective, then it is injective.
- 4. Let X be a normed linear space.
 - (a) (5 pts) Give the definition of weakly convergence of a sequence $\{x_n\} \subset X$.
 - (b) (10 pts) Show that a weakly convergent sequence is bounded.
 - (c) (5 pts) Give an example of a sequence that converges weakly to zero but doesn't converge strongly to any point.
- 5. Let K be a closed convex set in a Hilbert space X. Let $x \in X$ and let $Px \in K$ be the point of K closest to x.
 - (a) (10 pts) Prove $\mathcal{R}(x Px, v Px) \leq 0$ for all $v \in K$. Here $\mathcal{R}(\cdot, \cdot)$ denotes the real parts of inner product (\cdot, \cdot) .
 - (b) (10 pts) Show that $||Px Py|| \le ||x y||$ for any $x, y \in X$.