TOPOLOGY PRELIM, JANUARY 2017

1. On \mathbb{R} we consider the topology τ generated by the basis of all sets of the form (a, b) and all sets of the form $(a, b) \setminus K$, where $K := \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$.

(a) Prove that [0,1] is not compact in (\mathbb{R}, τ) .

(b) Prove that (\mathbb{R}, τ) is connected but it is not path connected.

2. Let X be a set and τ and σ topologies on X so that τ is strictly finer (larger) than σ . Prove the following statements:

(a) If (X, τ) is compact and Hausdorff, then (X, σ) is not Hausdorff. (b) If (X, σ) is compact and Hausdorff, then (X, τ) is not compact. Hint: Consider the identity map on X.

3. Define

 $A = \{x \in \mathbb{R}^2 : \text{both coordinates of } x \text{ are rational} \}$ $B = \{x \in \mathbb{R}^2 : \text{ at least one coordinate of } x \text{ is rational} \}.$

Show that $\mathbb{R}^2 \setminus A$ is connected and $\mathbb{R}^2 \setminus B$ is not connected.

4. Let X be a topological space and $f, g: X \to \mathbb{S}^2$ two continuous maps. Show that if for every $x \in X$ the points f(x) and g(x) on \mathbb{S}^2 are not antipodal to each other, then f and g are homotopic.

5. Compute the fundamental groups of the following spaces:

(a) The torus $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$.

(b) The pinched torus $\mathbb{S}^1 \times \mathbb{S}^1 / \mathbb{S}^1 \times \{1\}$.

6. Assume $p: \tilde{X} \to X$ is a covering and both X and \tilde{X} are path connected. Assume A is a path connected subset of X so that $i_*: \pi_1(A, a) \to \pi_1(X, a)$ is onto, for some $a \in A$, where $i : A \to X$ is the inclusion map. Prove that $p^{-1}(A)$ is path connected as well.