Numerical Analysis January 12, 2017

Qualifying Exam

1. Show that if v € RY and vTv = 1, then the matrix Q = I — 2vv” is both symmetric and orthogonal.

2. Consider a quadrature of the form
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Show that it is exact for any polynomial f(x) of degree at most 3.
3. Consider the Newton’s method
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for finding the root of the equation f(z) = 0. Assume that Z is a root of multiplicity m, i.e., f(z) =
(x—Z)™g(x), where m > 1 is an integer and g(x) is a smooth function with g(z) # 0 and the Newton’s
method converges to . Show that Newton’s method must converge to T only linearly. How would you
modify the method to obtain quadratic convergence?

4. Consider a matrix A and it inverse A~*

—-04 1.0 —0.8
A= 1.2 —20 14 and A7 =
—-06 1.0 —0.2
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(a) What is ||A]|; and ||A|?
(b) What is the condition number of A in 1-norm?

(c) Suppose Az = b and (A + E)& = b, where ||E||; < 0.01. Give a bound on the relative difference
between the two solutions in 1-norm.

5. The barycentric form of Lagrange’s interpolation takes the form
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Verify that the above formula indeed produces the unique interpolation polynomial.

6. Suppose that g : [a,b] — [a,b] is continuous on interval [a,b] and is a contraction, i.e. there exists a
constant L € (0,1) such that

lg(z) —g(y)| < Lz —y|, Va,y € [a,b].

Prove that there exists a unique fixed point in [a,b] and that the fixed point iteration x,+1 = g(z,)
converges to the fixed point for any xg € [a,b]. Also, prove that the error is reduced by a factor of at
least L from each iteration to the next.



