Qualifying Exam

1. Show that if $v \in \mathbb{R}^{N}$ and $v^{T} v=1$, then the matrix $Q=I-2 v v^{T}$ is both symmetric and orthogonal.
2. Consider a quadrature of the form

$$
\int_{-1}^{1}|x| f(x) d x=\frac{1}{4}(f(-1)+2 f(0)+f(1)) .
$$

Show that it is exact for any polynomial $f(x)$ of degree at most 3 .
3. Consider the Newton's method

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}, \quad k=1,2, \ldots
$$

for finding the root of the equation $f(x)=0$. Assume that \bar{x} is a root of multiplicity m, i.e., $f(x)=$ $(x-\bar{x})^{m} g(x)$, where $m>1$ is an integer and $g(x)$ is a smooth function with $g(\bar{x}) \neq 0$ and the Newton's method converges to \bar{x}. Show that Newton's method must converge to \bar{x} only linearly. How would you modify the method to obtain quadratic convergence?
4. Consider a matrix A and it inverse A^{-1}

$$
A=\left(\begin{array}{rrr}
-0.4 & 1.0 & -0.8 \\
1.2 & -2.0 & 1.4 \\
-0.6 & 1.0 & -0.2
\end{array}\right) \quad \text { and } \quad A^{-1}=\left(\begin{array}{lll}
5 & 3 & 1 \\
3 & 2 & 2 \\
0 & 1 & 2
\end{array}\right)
$$

(a) What is $\|A\|_{1}$ and $\|A\|_{\infty}$?
(b) What is the condition number of A in 1-norm?
(c) Suppose $A x=b$ and $(A+E) \hat{x}=b$, where $\|E\|_{1} \leq 0.01$. Give a bound on the relative difference between the two solutions in 1-norm.
5. The barycentric form of Lagrange's interpolation takes the form

$$
p_{n}(x)=\frac{\sum_{j=0}^{n} w_{j} f\left(x_{j}\right) /\left(x-x_{j}\right)}{\sum_{j=0}^{n} w_{j} /\left(x-x_{j}\right)}
$$

where

$$
w_{j}=\frac{1}{\Psi_{n}^{\prime}\left(x_{j}\right)} \quad \text { with } \quad \Psi_{n}(x)=\prod_{j=0}^{n}\left(x-x_{j}\right)
$$

Verify that the above formula indeed produces the unique interpolation polynomial.
6. Suppose that $g:[a, b] \rightarrow[a, b]$ is continuous on interval $[a, b]$ and is a contraction, i.e. there exists a constant $L \in(0,1)$ such that

$$
|g(x)-g(y)| \leq L|x-y|, \quad \forall x, y \in[a, b]
$$

Prove that there exists a unique fixed point in $[a, b]$ and that the fixed point iteration $x_{n+1}=g\left(x_{n}\right)$ converges to the fixed point for any $x_{0} \in[a, b]$. Also, prove that the error is reduced by a factor of at least L from each iteration to the next.

