Probability Prelim Exam for Actuarial Students January 2017

Instructions

- (a). The exam is closed book and closed notes.
- (b). Answers must be justified whenever possible in order to earn full credit.
- (c). Points will be deducted for incoherent, incorrect, and/or irrelevant statements.
- 1. (10 points) Let $\{A_n : n \ge 1\}$ be a sequence of events in (Ω, \mathscr{F}, P) . Show that

 $P(\liminf A_n) \le \liminf P(A_n) \le \limsup P(A_n) \le P(\limsup A_n),$

where $\liminf A_n$ and $\limsup A_n$ are defined as

$$\liminf A_n = \bigcup_{i \ge 1} \left(\bigcap_{j \ge i} A_j \right), \quad \limsup A_n = \bigcap_{i \ge 1} \left(\bigcup_{j \ge i} A_j \right).$$

- 2. (10 points) Jensen's inequality.
 - (a) (5 points) State Jensen's inequality.
 - (b) (5 points) Prove Jensen's inequality.
- 3. (10 points) Let (X, Y) be bivariate normally distributed with mean 0. The joint probability density function is given by

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{x^2}{\sigma_1^2} - \frac{2\rho xy}{\sigma_1\sigma_2} + \frac{y^2}{\sigma_2^2}\right]\right).$$

Show that X and Y are independent if and only if

$$E(XY) = 0.$$

- 4. (10 points) Let $\{Z_n : n \ge 1\}$ be a sequence of random variables on (Ω, \mathscr{F}, P) . Suppose that $Z_n \to Z$ almost surely, where Z is a random variable on the same probability space. Show that $Z_n \to Z$ in probability.
- 5. (10 points) Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with finite expectation. Calculate $E[X_1|X_1 + X_2 + \cdots + X_n]$.
- 6. (10 points) Let $\{X_n : n \ge 1\}$ be a sequence of independent and identically distributed random variables with the following distribution:

$$P(X_1 = 1) = \frac{2}{3}, \quad P(X_1 = -1) = \frac{1}{3}.$$

Let $S_0 = 0$ and $S_n = X_1 + X_2 + \dots + X_n$ for $n \ge 1$.

Probability Prelim Exam for Actuarial Students January 2017

- (a) (5 points) Show that $\{Z_n : n \ge 0\}$ is a martingale, where $Z_n = 2^{-S_n}$ for $n \ge 0$.
- (b) (5 points) Let $\tau = \inf\{n \ge 0 : |S_n| = M\}$ for some integer M > 0. Calculate $P(S_{\tau} = M)$.
- 7. (10 points) Let $\{B_t : t \ge 0\}$ be a standard Brownian motion. Let $W_0 = 0$ and

$$W_t = tB_{\frac{1}{t}}, \quad t > 0.$$

Show that $\{W_t : t \ge 0\}$ is a Brownian motion.