Real Analysis Preliminary Exam, January 2017

Instructions and notation:

(i) Complete all problems. Give full justifications for all answers in the exam booklet.
(ii) Lebesgue measure on \mathbb{R}^{n} is denoted by m or $d x$. For $x \in \mathbb{R}^{n}$ and $r>0$ we denote by $B(x, r)$ the open ball centered at x with radius $r>0$. We denote by $C_{c}\left(\mathbb{R}^{n}\right)$ the space of compactly supported continuous functions in \mathbb{R}^{n}.

1. (15 points)
(a) State and prove Hölder's inequality.
(b) Let $f \in L^{2}(\mathbb{R}, m)$ and set $F(x):=\int_{0}^{x} f(t) d t$. Prove that there exists some constant $C \geq 0$ such that

$$
|F(x)-F(y)| \leq C|x-y|^{1 / 2}
$$

for all $x, y \in \mathbb{R}$.
2. (15 points) Prove or disprove three of the following statements.
(a) If $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $L^{2}\left(\mathbb{R}^{n}, m\right)$, then it converges a.e.
(b) If $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of measurable functions which converges in $L^{\infty}\left(\mathbb{R}^{n}, m\right)$, then it converges a.e.
(c) If U is a subset of \mathbb{R}^{n} whose boundary has outer Lebesgue measure 0 , then U is Lebesgue measurable.
(d) Let (X, \mathcal{A}, v) be a measure space, and suppose that μ is a signed measure on (X, \mathcal{A}) satisfying $\mu \ll v$. If $v(A)=0$ then $\mu^{+}(A)=\mu^{-}(A)=0$ where $\mu=\mu^{+}-\mu^{-}$is the Jordan decomposition of μ.
3. (10 points) Let $g \in L^{1}\left(\mathbb{R}^{n}, m\right)$ such that

$$
\int g(x) \phi(x) d x=0
$$

for all $\phi \in C_{c}\left(\mathbb{R}^{n}\right)$, then $g=0$ a.e.
4. (10 points) Let f be a nonnegative measurable real function such that for all $n \geq 1$,

$$
\int \frac{n^{2}}{n^{2}+x^{2}} f\left(x-\frac{1}{n}\right) d x \leq 1
$$

Show that $f \in L^{1}(\mathbb{R}, m)$ and $\|f\|_{1} \leq 1$.
5. (10 points) Let $f, g \in L^{1}\left(\mathbb{R}^{n}, m\right)$ be non-negative functions such that

$$
\liminf _{k \rightarrow \infty} \frac{\int_{B(x, 1 / k)} f(y) d y}{\int_{B(x, 1 / k)} g(y) d y} \leq 1
$$

for m-a.e. $x \in \mathbb{R}^{n}$. Show that $f \leq g$ a.e.
6. (10 points) Let $\left\{q_{j}: j=1, \ldots\right\}$ be an enumeration of the rational numbers. For $n \geq 1$, consider the functions

$$
f_{n}(x)=\sum_{j \leq n} \frac{2^{-j}}{\sqrt{\left|x-q_{j}\right|}} \mathbf{1}_{\mathbb{R} \backslash\left\{q_{j}\right\rangle}(x)
$$

(a) Prove that $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$ exists a.e. and belongs to $L^{1}(I, m)$ for any bounded interval I.
(b) Show that for any constant M the set of points $\{x \in \mathbb{R}: f(x) \leq M\}$ does not contain any interval.

