
MATH 5510 January 2018 PRELIMINARY EXAMINATION

INSTRUCTIONS: Solve three out of five questions. You do not have to prove results which
you rely upon, just state them clearly.

Good luck!

Q1) Answer 3 out of 4 questions (a), (b), (c), (d).

(a) Let we are given (n + 1) points {xk, yk}, k = 0, 1, . . . , n. Give a proof that the
interpolation problem of finding a polynomial

P01...n(x) = a0 + a1x + a2x
2 + . . . anx

n

whose degree does not exceed n and such that

P01···n(xk) = yk (k = 0, 1, . . . , n),

is equivalent to solving a linear system
1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

1 xn x2n · · · xnn


︸ ︷︷ ︸

Vn+1


a0
a1
...
an

 =


y0
y1
...
yn



with a Vandermone coefficient matrix Vn+1.

(b) Derive the factorization

Vn+1 =



1 0 0 · · · 0

1 1 0
...

1 0 1
. . .

...
...

...
. . .

. . . 0
1 0 · · · 0 1





1 0 · · · · · · 0

0 x2 − x1
. . .

...
...

. . . x3 − x1
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 xn − x1


[

1 0

0 Vn

]


1 x1 x21 · · · xn−11

0 1 x1
. . .

...
...

. . . 1
. . . x21

...
. . .

. . . x1
0 · · · · · · 0 1


.

(c) Use the factorization of (b) to derive a recursive formula for the determinant of the
Vandermonde matrix Vn+1. Use the latter to prove that the interpolation problem of
(a) is always solvable and that the solution is unique.

(d) Show that if the function f has an (n + 1)st derivative, then for every argument y there
exists a number s in the smallest interval I[x0, ..., xn, y] which contains y and support
abscissas xi, satisfying

f(y)− P01...n(y) =
w(y)f (n+1)(s)

(n + 1)!



where P01...n(y) is the interpolating polynomial

P01···n(xj) = f(xj) (j = 0, 1, . . . , n),

and
w(x) = (x− x0)(x− x1) · · · (x− xn).

Q2) Answer 3 out of 3 questions (a), (b), (c).

(a) Prove that the Householder reflection matrix P = I − 2ww∗ (with w∗w = 1) is unitary
and that P 2 = I.

(b) For a given vector x explain how to find w such that

Px = ke1

with some k. Derive explicit formulas for w and k.

(c) Describe how, for a real matrix A, a sequence of Housholder reflections can be used to
compute the QR factorization A = QR with orthogonal Q and upper triangular R.

Q3) Answer 3 out of 4 questions (a), (b), (c), (d).

(a) Let ‖x‖ denotes the usual Euclidean norm
√
xTx. Prove that the linear least squares

problem
min
x∈Rn

‖y −Ax‖

with a m× n matrix A has at least one minimal point x0.

(b) Prove that if x1 is another minimum point, then Ax0 = Ax1. The residual r := y − Ax
is uniquely determined and satisfies the equation AT r = 0.

(c) Prove that Every minimum point x0 is also a solution of normal equations

ATAx = AT y

and conversely.

(d) Explain how the orthogonalization technique of Q2 (that is, computing for the m × n
matrix A the factorization A = QR with m×m orthogonal matrix Q and m× n upper
triangular matrix R) yields an efficient algorithm for solving the above least squares
problem.

Q3) Answer 3 out of 4 questions (a), (b), (c), (d).

(a) Let T be an n× n positive definite matrix. Relate the factorization

TŨ = L̃ (1)

to the standard LDL∗ factorization of T to prove that (1) always exists and it is unique.
Here Ũ is a unit (i.e., with 1’s on the main diagonal) upper triangular matrix, and L̃ is
a lower triangular matrix.
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(b) Let 〈·, ·〉 be an arbitrary inner product in the vector space Πn (of all polynomials whose
degree does not exceed n). Let T be a positive definite moment matrix, i.e., T =
[〈xi, xj〉]ni,j=0. Let

uk(x) = u0,k + u1,kx + u2,kx
2 + . . . + uk−1,kx

k−1 + xk. (2)

be the k-th orthogonal polynomial with respect to 〈·, ·〉. Prove that the k-th column of
the matrix Ũ of (a) contains the coefficients of uk(x) as in

Ũ =



1 u0,1 u0,2 u0,3 · · · · · · u0,n
0 1 u1,2 u1,3 · · · · · · u1,n
0 0 1 u2,3 · · · · · · u2,n
... 0 1 · · · · · · u3,n
...

. . .
. . .

...
...

. . . 1 un−1,n
0 · · · · · · 0 1


.

(c) Assuming now that the moment matrix T has Toeplitz structure derive the so-called
Levinson algorithm, that is, an algorithm to compute the columns of Ũ based on the
formula (deduce it) that relates the k-th column uk of U to its ”predecessor” uk−1
(k = 2, 3, . . . , n).

Hint: Use the fact (no need to prove it) that Toeplitz moment matrices T have the
following property: if

T



x1
x2
x3
...

xn−2
xn−1
xn


=



y1
y2
y3
...

yn−2
yn−1
yn


then

T



x∗n
x∗n−1
x∗n−2

...
x∗3
x∗2
x∗1


=



y∗n
y∗n−1
y∗n−2

...
y∗3
y∗2
y∗1


(d) Prove that the algorithm of (c) uses O(n2) arithmetic operations.

Q5) Answer 4 out of 5 questions (a), (b), (c), (d), (e).

(a) Derive the recurrence relation Tn+1(x) = 2xTn(x)− Tn−1(x) for the Chebyshev polyno-
mials:

Tn(x) = cos(n cos−1 x), n = 0, 1, ....
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and prove that T̂n(x) = (1/2n−1)Tn(x) is a monic polynomial (that is, the leading coef-
ficient is 1).

(b) Derive the formula for all the zeros of Tn(x).

(c) Derive the formula for all the extrema of Tn(x) in the closed interval [−1, 1].

(d) Prove that T̂n(x) has minimal infinity norm among all monic polynomials of degree n on
the interval [−1, 1]. Specifically, show that ‖T̂n(x)‖∞ = 1/2n−1, where ‖ · ‖∞ denotes
the maximum norm of a function on the interval [−1, 1].

(e) Prove that Chebyshev polynomials are orthogonal with respect to the inner product in
Πn defined by

< a(x), b(x) >=

∫ 1

−1

a(x)b(x)√
1− x2

dx.
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