INSTRUCTIONS: Solve three out of five questions. You do not have to prove results which you rely upon, just state them clearly.

Good luck!

- Q1) Answer 3 out of 4 questions (a), (b), (c), (d).
 - (a) Let we are given (n + 1) points $\{x_k, y_k\}$, k = 0, 1, ..., n. Give a proof that the interpolation problem of finding a polynomial

$$P_{01...n}(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

whose degree does not exceed n and such that

$$P_{01\cdots n}(x_k) = y_k$$
 $(k = 0, 1, \dots, n),$

is equivalent to solving a linear system

$$\underbrace{\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix}}_{V_{n+1}} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

with a Vandermone coefficient matrix V_{n+1} .

(b) Derive the factorization

							0]	1		-		-	1
	1	1	0		÷	0	$x_2 - x_1$	·		:		0	1	x_1	·	÷	
$V_{n+1} =$	1	0	1	۰.	÷	:	·	$x_3 - x_1$	۰.	:	$\left[\begin{array}{c c} 1 & 0 \\ \hline 0 & V_n \end{array}\right]$:	••.	1	۰.	x_{1}^{2}	.
	÷	÷	·	·	0			·	·	0		:		·	·	x_1	
	1	0		0	1] [0	•••		0	$x_n - x_1$		0	• • •	• • •	0	1	

- (c) Use the factorization of (b) to derive a recursive formula for the determinant of the Vandermonde matrix V_{n+1} . Use the latter to prove that the interpolation problem of (a) is always solvable and that the solution is unique.
- (d) Show that if the function f has an (n + 1)st derivative, then for every argument y there exists a number s in the smallest interval $I[x_0, ..., x_n, y]$ which contains y and support abscissas x_i , satisfying $(x_i) \in C(n+1)(x_i)$

$$f(y) - P_{01...n}(y) = \frac{w(y)f^{(n+1)}(s)}{(n+1)!}$$

where $P_{01...n}(y)$ is the interpolating polynomial

$$P_{01\cdots n}(x_j) = f(x_j)$$
 $(j = 0, 1, \dots, n),$

and

$$w(x) = (x - x_0)(x - x_1) \cdots (x - x_n).$$

- Q2) Answer 3 out of 3 questions (a), (b), (c).
 - (a) Prove that the Householder reflection matrix $P = I 2ww^*$ (with $w^*w = 1$) is unitary and that $P^2 = I$.
 - (b) For a given vector x explain how to find w such that

$$Px = ke_1$$

with some k. Derive explicit formulas for w and k.

- (c) Describe how, for a real matrix A, a sequence of Housholder reflections can be used to compute the QR factorization A = QR with orthogonal Q and upper triangular R.
- **Q3)** Answer 3 out of 4 questions (a), (b), (c), (d).
 - (a) Let ||x|| denotes the usual Euclidean norm $\sqrt{x^T x}$. Prove that the linear least squares problem

$$\min_{x \in \mathbb{R}^n} \|y - Ax\|$$

with a $m \times n$ matrix A has at least one minimal point x_0 .

- (b) Prove that if x_1 is another minimum point, then $Ax_0 = Ax_1$. The residual r := y Ax is uniquely determined and satisfies the equation $A^T r = 0$.
- (c) Prove that Every minimum point x_0 is also a solution of normal equations

$$A^T A x = A^T y$$

and conversely.

- (d) Explain how the orthogonalization technique of Q2 (that is, computing for the $m \times n$ matrix A the factorization A = QR with $m \times m$ orthogonal matrix Q and $m \times n$ upper triangular matrix R) yields an efficient algorithm for solving the above least squares problem.
- Q3) Answer 3 out of 4 questions (a), (b), (c), (d).
 - (a) Let T be an $n \times n$ positive definite matrix. Relate the factorization

$$TU = L \tag{1}$$

to the standard LDL^* factorization of T to prove that (1) always exists and it is unique. Here \tilde{U} is a unit (i.e., with 1's on the main diagonal) upper triangular matrix, and \tilde{L} is a lower triangular matrix. (b) Let $\langle \cdot, \cdot \rangle$ be an arbitrary inner product in the vector space Π_n (of all polynomials whose degree does not exceed n). Let T be a positive definite moment matrix, i.e., $T = [\langle x^i, x^j \rangle]_{i,j=0}^n$. Let

$$u_k(x) = u_{0,k} + u_{1,k}x + u_{2,k}x^2 + \ldots + u_{k-1,k}x^{k-1} + x^k.$$
(2)

be the k-th orthogonal polynomial with respect to $\langle \cdot, \cdot \rangle$. Prove that the k-th column of the matrix \widetilde{U} of (a) contains the coefficients of $u_k(x)$ as in

	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	$egin{array}{c} u_{0,1} \ 1 \ 0 \end{array}$	$u_{0,2} \\ u_{1,2} \\ 1$	$u_{0,3} \\ u_{1,3} \\ u_{1,3}$	· · · ·	· · · · · · ·	$u_{0,n}$ $u_{1,n}$	
$\widetilde{U} =$:	0	$1 \\ 0$	$u_{2,3}$ 1	· · · ·		$egin{array}{c} u_{2,n} \ u_{3,n} \ dots \end{array}$	
	· : 0				··.	$\begin{array}{c} 1 \\ 0 \end{array}$	$u_{n-1,n}$	

(c) Assuming now that the moment matrix T has Toeplitz structure derive the so-called Levinson algorithm, that is, an algorithm to compute the columns of \tilde{U} based on the formula (deduce it) that relates the k-th column u_k of U to its "predecessor" u_{k-1} (k = 2, 3, ..., n).

Hint: Use the fact (no need to prove it) that Toeplitz moment matrices T have the following property: if

$$T\begin{bmatrix} x_{1}\\ x_{2}\\ x_{3}\\ \vdots\\ x_{n-2}\\ x_{n-1}\\ x_{n} \end{bmatrix} = \begin{bmatrix} y_{1}\\ y_{2}\\ y_{3}\\ \vdots\\ y_{n-2}\\ y_{n-1}\\ y_{n} \end{bmatrix}$$
$$\begin{bmatrix} x_{n-1}\\ x_{n}\\ x_{n-1}\\ \vdots\\ x_{n-1}^{*} \end{bmatrix} \begin{bmatrix} y_{n}^{*}\\ y_{n-1}^{*}\\ \vdots\\ y_{n-1}^{*} \end{bmatrix}$$

then

$$T \begin{bmatrix} x_{n-1} \\ x_{n-2}^{*} \\ \vdots \\ x_{3}^{*} \\ x_{2}^{*} \\ x_{1}^{*} \end{bmatrix} = \begin{bmatrix} y_{n-1} \\ y_{n-2}^{*} \\ \vdots \\$$

- (d) Prove that the algorithm of (c) uses $O(n^2)$ arithmetic operations.
- **Q5)** Answer 4 out of 5 questions (a), (b), (c), (d), (e).
 - (a) Derive the recurrence relation $T_{n+1}(x) = 2xT_n(x) T_{n-1}(x)$ for the Chebyshev polynomials:

$$T_n(x) = \cos(n\cos^{-1}x), \ n = 0, 1, \dots$$

and prove that $\hat{T}_n(x) = (1/2^{n-1})T_n(x)$ is a monic polynomial (that is, the leading coefficient is 1).

- (b) Derive the formula for all the zeros of $T_n(x)$.
- (c) Derive the formula for all the extrema of $T_n(x)$ in the closed interval [-1, 1].
- (d) Prove that $\hat{T}_n(x)$ has minimal infinity norm among all monic polynomials of degree n on the interval [-1, 1]. Specifically, show that $\|\hat{T}_n(x)\|_{\infty} = 1/2^{n-1}$, where $\|\cdot\|_{\infty}$ denotes the maximum norm of a function on the interval [-1, 1].
- (e) Prove that Chebyshev polynomials are orthogonal with respect to the inner product in Π_n defined by

$$< a(x), b(x) > = \int_{-1}^{1} \frac{a(x)b(x)}{\sqrt{1 - x^2}} dx.$$