Probability Prelim Exam for Actuarial Students January 2018

Instructions

- (a). The exam is closed book and closed notes.
- (b). Answers must be justified whenever possible in order to earn full credit.
- (c). Points will be deducted for incoherent, incorrect, and/or irrelevant statements.
- 1. (10 points) Give an example of events A, B, and C that satisfy the following conditions:
 - (a). $P(A) \in (0, 1), P(B) \in (0, 1), \text{ and } P(B) \in (0, 1).$
 - (b). $P(A \cap B) = P(A)P(B), P(A \cap C) = P(A)P(C), \text{ and } P(A \cap B \cap C) = P(A)P(B)P(C).$
 - (c). $P(B \cap C) \neq P(B)P(C)$
- 2. (10 points) Let $\{E_n\}_{n\geq 1}$ be a sequence of events in a probability space (Ω, \mathscr{F}, P) . Suppose that

$$\liminf_{n \to \infty} P(E_n) = 0$$

and

$$\sum_{n=1}^{\infty} P(E_{n+1} \cap E_n^c) < \infty.$$

show that $P(\limsup E_n) = 0.$

3. (10 points) Let X be a random variable in L^1 . Prove that

$$E[X] = \int_0^\infty \left[P(X > t) - P(X < -t) \right] dt.$$

4. (10 points) Let X be a random variable that has finite mean m and finite variance σ^2 . Show that for any $\alpha > 0$,

$$P(X \ge \alpha + m) \le \frac{\sigma^2}{\sigma^2 + \alpha^2}.$$

5. (10 points) Suppose that X_1, X_2, \ldots are IID with distribution function F. Define

$$\hat{F}_n(x) = \frac{1}{n} \sum_{j \le n} \mathbf{1}_{\{X_i \le x\}}.$$

Prove the following:

- (a). $\hat{F}_n(x) \to F(x)$ for all x, a.s.
- (b). If $X_1, X_2, ...$ are in L^1 , then

$$\lim_{n \to \infty} E\left[\int_0^\infty (\hat{F}_n(x) - F(x))^2 \mathrm{d}x\right] = 0$$

- 6. (10 points) Let $\{X_n\}_{n\geq 0}$ be a simple symmetric random walk with $X_0 = 10$. Let $\tau = \min\{n \geq 1 : X_n = 0\}$. Calculate the following quantities
 - (a) (3 points) $E[X_{100}]$.
 - (b) (3 points) $E[X_{\tau}]$.
 - (c) (4 points) $E[X_{\min\{n,\tau\}}]$.
- 7. (10 points) Let $(B_t : t \ge 0)$ be standard Brownian motion. For each i = 1, 2, ..., let $Z_i = 1$ if $B_i > B_{i-1}$ and zero otherwise, and let $T = \inf\{n : \sum_{i \le n} Z_i = 10\}$. Find the expectation of B_T .