Instructions and notation:

- (i) Complete all problems. Give full justifications for all answers in the exam booklet.
- (ii) Questions have equal weight, but one complete and correct question is worth more than two half-complete questions
- 1. (a) State the Arzelà-Ascoli theorem for a compact metric space. (Do not prove this.)
 - (b) Define what it means for a sequence of functions f_n to be equicontinuous.
 - (c) Suppose f_n is a sequence of continuous functions that is Cauchy in the uniform norm on a compact metric space X. Show that the sequence f_n is equicontinuous.
- 2. Let f be a non-negative Lebesgue measurable function on [0, 1] and let

$$A = \{(x, y) : 0 \le y \le f(x), \ x \in [0, 1]\}.$$

Is A measurable with respect to 2-dimensional Lebesgue measure? If so, what is its measure? If not, what additional assumption(s) would you need to ensure it is measurable and compute its measure?

- 3. Let $1 \le p < q < \infty$ and (X, \mathcal{F}, μ) be a measure space.
 - (a) Prove that $L^p(X,\mu) \nsubseteq L^q(X,\mu)$ if X contains sets of arbitrarily small positive measure.
 - (b) Prove that $L^q(X,\mu) \not\subseteq L^p(X,\mu)$ if X contains sets of arbitrarily large finite measure.
- 4. (a) Suppose f_n and f are in L¹(X, μ) and that f_n → f a.e. Show that f_n → f in L¹ if and only if ||f_n||₁ → ||f||₁.
 (Hint: For one direction it may help to consider the sequence |f| + |f_n| |f f_n|.)
 - (b) Give an example in which L^1 convergence does not imply a.e. convergence.
- 5. If $\mu \ll \nu$ and $\nu \ll \mu$ are finite measures on a measurable space (X, \mathcal{F}) show that the Radon-Nikodym derivatives satisfy $\frac{d\mu}{d\nu} \frac{d\nu}{d\mu} = 1 \mu$ -a.e.
- 6. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous.
 - (a) If *f* also has the property that for each $y \in \mathbb{R}$ there is at most one value of *x* with f(x) = y prove that *f* is differentiable almost everywhere on \mathbb{R} .
 - (b) If, instead, *f* has the property that for each $y \in \mathbb{R}$ there are at most two values of *x* with f(x) = y prove that *f* is differentiable almost everywhere on \mathbb{R} .