Study Guide for Ph.D. Examination in Geometry and Topology (Math 5310)

Point-set topology

Definitions: Topological space, metric space.

Examples: Intervals in \mathbb{R} (open, closed, half-open), \mathbb{R}^{\times} , \mathbb{C}^{\times} , subsets of \mathbb{R}^{n} , S^{n} , D^{n} , $\mathbb{P}^{n}(\mathbb{R})$, $GL_{2}(\mathbb{R})$, $SL_{2}(\mathbb{R})$, discrete topology, trivial topology, finite-complement topology.

Related concepts: Interior, closure, boundary, limit of a sequence, basis of a topology, fineness of a topology, second countable spaces.

Maps: Continuous maps, homeomorphisms, examples of homeomorphisms. Open maps, closed maps.

Induced topologies: Subspace topology, quotient topology (and its universal property), product topology, disjoint unions. Many examples for quotient topology.

Separation Axioms: Hausdorff, normal, Urysohn's Lemma.

Compactness: Definition, statement of Heine-Borel (without proof), simple properties. Applications: Hausdorff and compact \Rightarrow normal; maximum/minimum for real-valued functions; any map from compact to Hausdorff induces a homeomorphism (and variations on this statement). Tychonoff's theorem for finite products. Tychonoff's theorem for infinite products (without proof). Sequentially compact. For second countable spaces, sequentially compact \Leftrightarrow compact.

Connectedness: Several equivalent definitions of connectedness. Z connected $\Rightarrow \overline{Z}$ is connected. X is connected and $f: X \to Y$ continuous $\Rightarrow f(X)$ connected. X, Y connected $\Rightarrow X \times Y$ connected. Connected components. Path-connectedness. Locally path-connected.

Surfaces

Definitions: Topological manifolds, surfaces.

Examples: Sphere, projective plane, torus, Klein bottle.

Constructions: Connected sum. Polygon representations of surfaces.

Classification of Surfaces: Classification of polygon representations. Euler characteristic of poly-

gon representations.

FUNDAMENTAL GROUP

Basics: Homotopy of paths. Construction of the fundamental group. Simply-connected spaces.

Examples: $\pi_1(S^1)$. Brouwer's fixed point theorem and similar applications. π_1 of a product.

Induced Maps: Examples. Fundamental groups of spheres. Deformation retracts.

Seifert-van Kampen: Free products of groups, statement of Seifert-van Kampen (without proof). **Covering Spaces**: Definition. Lifting of paths and of homotopies. Lifting criterion in terms of the fundamental group.

Classification of coverings: Universal covering, classification of connected coverings via subgroups of π_1 (with or without choice of basepoint). Classification of coverings via permutation actions of π_1 .

Galois coverings: Deck transformations, normal coverings. Group action and coverings.

References:

T. W. Gamelin and R. E. Greene, *Introduction to Topology*, 2nd ed., Dover, 1999. Section 1.1, Chapter 2, Sections 3.1–3.7.

A. Hatcher, *Algebraic Topology*, Cambridge Univ. Press, 2002. Chapter 1. Skip "Applications to Cell Complexes" in 1.2. Also available online

- J. Lee, $Introduction\ to\ Topological\ Manifolds$, Springer-Verlag, 2000. Chapters 2–4, 6–12. Skip 2nd half of chapter 7.
- J. Munkres, *Topology*, 2nd ed., Prentice Hall, 2000. Chapters 2–5, 9, 11–14. Skip sections 34–36, 38, 75, and probably more.