Complex Analysis Prelim

January 2019

Notation and conventions:

- $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ is the open unit disk.
- The terminology *analytic* function and *holomorphic* function may be used interchangeably.

Problem 1. How many solutions (counted with multiplicity) does the equation $z^6 + 5z^3 + 1 = 0$ have in the unit disk \mathbb{D} ?

Problem 2. Let f be a holomorphic map of the unit disk \mathbb{D} into itself. Suppose f is not the identity map. Can f have two or more fixed points? Prove your assertion. (Recall $w \in \mathbb{D}$ is a fixed point of f if f(w) = w.)

Problem 3. Prove or disprove that there exists a holomorphic function f(z) defined on the punctured disk $\mathbb{D} \setminus \{0\}$ such that

$$\lim_{z \to 0} zf(z) = 0 \quad \text{and} \quad \lim_{z \to 0} |f(z)| = \infty.$$

Problem 4. Find a one-to-one conformal map from $U = \{z \in \mathbb{C} : |z| > 1 \text{ and } \text{Im}(z) > 0\}$ onto the unit disk \mathbb{D} .

Problem 5. Suppose f is a non-constant holomorphic function on \mathbb{D} . Suppose |f| is constant on the circle $|z| = \frac{1}{2}$. Show that f has at least one zero in $\Omega = \{z \in \mathbb{C} : |z| < \frac{1}{2}\}$.

Problem 6. Let *a* be a positive real number. Compute

$$\int_{-\infty}^{\infty} \frac{\cos(ax)}{(1+x^2)^2} \, dx.$$

Problem 7. Is there a one-to-one conformal map from the punctured disk $\mathbb{D} \setminus \{0\}$ onto the annulus $A = \{z \in \mathbb{C} : 1 < |z| < 2\}$? Prove your assertion.