Instructions: Solve 6 out of 8 problems. Any results that your responses rely upon must be stated clearly.

1. Given any real-valued function $f=f(x)$ that is continuous for all $x \in[-1,1]$, let $I(f)=\int_{-1}^{1} f(x) d x$. Define a quadrature approximation by

$$
\tilde{I}(f)=w_{-1} f(-1)+w_{0} f(0)+w_{1} f(1)
$$

Here, the weights $w_{j}, j=-1,0,1$, are real numbers such that $I(f)=\tilde{I}(f)$ whenever f is a polynomial of degree four or less with $f(0)=f^{\prime}(0)$ and $f(1)=f^{\prime}(1)$.
(a) Prove that the weights $w_{j}, j=-1,0,1$, exist and are unique.
(b) Prove that there exists a positive constant $C>0$ such that for all $f \in \mathcal{C}^{5}[-1,1]$ with $f(0)=f^{\prime}(0)$ and $f(1)=f^{\prime}(1)$,

$$
\tilde{I}(f)-I(f)=C f^{(5)}(\xi)
$$

for some $\xi \in(-1,1)$, where ξ may depend on f, but C does not.
2. Given a space of real-valued functions $X=\left\{f \in \mathcal{C}^{2}[-1,1] \mid f^{\prime}(-1)=f^{\prime}(1)=0\right\}$, define the subset $Y=\{f \in X \mid f(-1)=0, f(0)=1$, and $f(1)=4 / 3\}$. Prove that

$$
\inf _{f \in Y} \int_{-1}^{1}\left|f^{\prime \prime}(x)\right|^{2} d x=\frac{16}{3}
$$

3. Let $n>0$ be an integer. For each $j=0,1, \ldots, n$, let $\phi_{j}(x)$ be a real-valued polynomial of degree n or less. Assume that for any integers $0 \leq i \leq n$ and $0 \leq j \leq n$,

$$
\int_{0}^{1} \phi_{i}(x) \phi_{j}(x) d x=\left\{\begin{array}{cc}
2, & \text { if } i=j \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Prove that the polynomials $\phi_{j}, 0 \leq j \leq n$, are linearly independent.
(b) Given a continuous function $f:[0,1] \rightarrow \mathbb{R}$, provide the explicit formulas for the values c_{j}, $0 \leq j \leq n$, such that $p(x)=\sum_{j=0}^{n} c_{j} \phi_{j}(x)$ satisfies

$$
\begin{equation*}
\left.\left.\int_{0}^{1}(f(x)-p(x))\right)^{2} d x \leq \int_{0}^{1}(f(x)-q(x))\right)^{2} d x \tag{1}
\end{equation*}
$$

for all real-valued polynomials $q(x)$ of degree n or less. Subsequently, prove that (1) holds.
4. Given the matrix \mathbf{A} below, calculate an upper-triangular matrix \mathbf{R} for a QR-factorization $\mathbf{A}=\mathbf{Q R}$ by using Householder matrices. Do not calculate \mathbf{Q}, but formulas for each Householder matrix must be shown, specifying numerical values for all quantities in the formulas.

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 4 \\
1 & 4 \\
1 & 1 \\
1 & 1
\end{array}\right]
$$

5. Given any matrix \mathbf{S}, denote by \mathbf{S}^{H} the result of replacing each entry of \mathbf{S} by its complex conjugate, then transposing the resulting matrix. Let \mathbf{A} and \mathbf{B} be matrices that satisfy
$\mathbf{U}^{H} \mathbf{A V}=\mathbf{B}$, where \mathbf{U} and \mathbf{V} are unitary matrices. Denote by \mathbf{A}^{+}and \mathbf{B}^{+}the pseudoinverses of \mathbf{A} and \mathbf{B}, respectively. Prove that $\mathbf{V}^{H} \mathbf{A}^{+} \mathbf{U}=\mathbf{B}^{+}$.
6. Denote by $\|\cdot\|_{2}$ the Euclidean vector norm on \mathbb{C}^{n}, and let M_{n} be the space of all complex, square matrices with n rows. Given any $\mathbf{A} \in M_{n}$, denote the induced matrix norm by

$$
\|\mathbf{A}\|=\max _{\|\vec{x}\|_{2}=1}\|\mathbf{A} \vec{x}\|_{2}
$$

Next, let $\mathbf{A} \in M_{n}$ be a fixed Householder matrix, and assume $\mathbf{B} \in M_{n}$ is given such that $\|\mathbf{B}-\mathbf{A}\|=1 / 3$.
(a) Prove that \mathbf{B} is nonsingular.
(b) If $\mathbf{A} \vec{x}=\mathbf{B} \vec{y}$, prove that $2\|\vec{x}-\vec{y}\|_{2} \leq\|\vec{x}\|_{2}$.
7. Given any real-valued function $f=f(x)$ that is continuous for all $x \in[0,1]$ and differentiable at $x=0$, let $\tilde{I}(f)$ denote the quadrature approximation

$$
\tilde{I}(f)=\frac{1}{12}\left(5 f(0)+f^{\prime}(0)+4 f(1 / 2)+3 f(1)\right)
$$

with associated quadrature error, say $R(f)$, defined by

$$
R(f)=\tilde{I}(f)-\int_{0}^{1} f(x) d x
$$

Given any $f \in \mathcal{C}^{3}[0,1]$, prove that there exists some $y \in(0,1)$ such that

$$
R(f)=\frac{1}{144} f^{(3)}(y)
$$

8. Given any real-valued function $f \in \mathcal{C}[-1,1]$, let $I(f)=\int_{-1}^{1} w(x) f(x) d x$, where $w(x)=x^{2}$. Derive a quadrature rule that calculates $I(f)$ exactly whenever f is a polynomial of degree three or less.
