Probability Prelim Exam for Actuarial Students January 2019

Instructions

- (a). The exam is closed book and closed notes.
- (b). Answers must be justified whenever possible in order to earn full credit.
- (c). Points will be deducted for incoherent, incorrect, and/or irrelevant statements.
- 1. (10 points) Let \mathscr{F} be the smallest class of subsets of $\mathbb{N} = \{1, 2, ...\}$ with the property that $A \in \mathcal{F}$ if and only if A or its complement A^c are finite (the emptyset is finite).
 - (a) (3 points) Find a subset of \mathbb{N} not in \mathcal{F} .
 - (b) (7 points) Show that the smallest σ -algebra containing \mathcal{F} is the power set of \mathbb{N} , that is all subsets of \mathbb{N} .
- 2. (10 points) Suppose that $(X_n : n \in \mathbb{N})$ are positive RVs satisfying $E[X_n] = 1$. Use the Borel-Cantelli Lemma to show that $\limsup_{n\to\infty} \frac{\ln X_n}{n} \leq 0$, a.s.
- 3. (10 points) Let X be a random variable on a probability space (Ω, \mathscr{F}, P) . Suppose that X takes only on nonnegative integer values. Show that

$$E[X] = \sum_{k=0}^{\infty} P\{X > k\}.$$

- 4. (10 points) Let X be standard normal. Compute E[|X|].
- 5. (10 points) Let X_1, X_2, \ldots be a sequence of random variables, with $E[X_n] = 8$ and $Var[X_n] = 1/\sqrt{n}$ for each $n = 1, 2, \ldots$ Prove or disprove that $\{X_n\}$ must converge to 8 in probability.
- 6. (10 points) Let Z_1, Z_2, \ldots be a sequence of independent and identically distributed random variables that follow the following distribution:

$$P(Z_1 = 1) = \frac{3}{4}, \quad P(Z_1 = -1) = \frac{1}{4}.$$

Let $X_0 = -10$ and $X_n = X_0 + Z_1 + \dots + Z_n$ for $n \ge 1$. Let τ be a stopping time defined as $\tau = \min\{n \ge 1 : X_n = 0\}$. Compute $E[\tau]$ and $E[X_{\tau}]$.

7. (10 points) Let $(B_t : t \ge 0)$ be standard Brownian motion and $\sigma > 0$. Let

$$X_t = \exp\left(\sigma B_t - \frac{\sigma^2}{2}t\right), \quad t \ge 0.$$

Show that $\{X_t\}$ is a martingale.