Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

- 1. (10 pts) For a ring R, write $GL_3(R)$ for the group of 3×3 matrices with entries in R and determinant in the units R^{\times} .
 - (a) (5 pts) Give, with reasoning, a matrix in $GL_3(\mathbf{Z})$ with first row (6 10 15).
 - (b) (5 pts) Let $\mathbf{Z}[x]$ be the polynomial ring with coefficients in \mathbf{Z} . Show that no matrix in $\mathrm{GL}_3(\mathbf{Z}[x])$ has first row $\begin{pmatrix} 6 & 2x & 3x \end{pmatrix}$.
- 2. (10 pts)
 - (a) (2 pts) For prime p, define a p-Sylow subgroup of a finite group G.
 - (b) (4 pts) Prove that if a *p*-group *H* acts on a finite set *X* then $\#X \equiv \#Fix_H(X) \mod p$, where $Fix_H(X)$ is the set of points in *X* fixed by all of *H*.
 - (c) (4 pts) For each prime p, prove that if P and Q are p-Sylow subgroups of a finite group G then P and Q are conjugate in G. (That is, prove the second part of the Sylow theorems.) You may use part (b).
- 3. (10 pts) Let F be a field.
 - (a) (5 pts) Prove that if $f(X) \neq 0$ in F[X] then it has at most deg f different roots in F.
 - (b) (5 pts) If $f(X_1, \ldots, X_n) \in F[X_1, \ldots, X_n]$ where F is infinite and $f(a_1, \ldots, a_n) = 0$ for all $a_1, \ldots, a_n \in F$ then prove f = 0 in $F[X_1, \ldots, X_n]$. You may use part (a).
- 4. (10 pts) Let R be a nonzero commutative ring with identity. A simple R-module is a nonzero R-module M whose only submodules are $\{0\}$ and M. Let A, B, and C all be simple R-modules.
 - (a) (4 pts) Show that an *R*-module homomorphism $f: A \to B$ is either 0 or an isomorphism.
 - (b) (6 pts) Suppose that $A \oplus C \cong B \oplus C$ as *R*-modules. Prove that $A \cong B$ as *R*-modules. You may use part (a).

Caution! Part (b) can fail for modules that are not all simple. For some rings R there is an R-module M such that $M \oplus R \cong R^2 \oplus R$ and $M \ncong R^2$.

- 5. (10 pts) Let R be a commutative ring with identity.
 - (a) (2 pts) Define what it means for R to be a principal ideal domain.
 - (b) (8 pts) Prove that if R is a principal ideal domain, then every nonzero prime ideal in R is a maximal ideal.
- 6. (10 pts) Give examples as requested, with justification.
 - (a) (2.5 pts) A noncyclic group that is *not* isomorphic to a semidirect product of nontrivial groups.
 - (b) (2.5 pts) A prime p such that the ideal $(p, x^2 3)$ in $\mathbb{Z}[x]$ is maximal.
 - (c) (2.5 pts) A UFD that is not a Euclidean domain.
 - (d) (2.5 pts) A cyclic $\mathbf{R}[T]$ -module that is 2-dimensional as a real vector space.