Justify all your steps. You may use any results that you know unless the question says otherwise, but don't invoke a result that is essentially equivalent to what you are asked to prove or is a standard corollary of it.

1. (10 pts) For a ring R, write $\mathrm{GL}_{3}(R)$ for the group of 3×3 matrices with entries in R and determinant in the units R^{\times}.
(a) ($\mathbf{5} \mathbf{~ p t s}$) Give, with reasoning, a matrix in $\mathrm{GL}_{3}(\mathbf{Z})$ with first row $\left(\begin{array}{lll}6 & 10 & 15\end{array}\right)$.
(b) ($\mathbf{5} \mathbf{~ p t s}$) Let $\mathbf{Z}[x]$ be the polynomial ring with coefficients in \mathbf{Z}. Show that no matrix in $\mathrm{GL}_{3}(\mathbf{Z}[x])$ has first row $\left(\begin{array}{lll}6 & 2 x & 3 x\end{array}\right)$.
2. ($\mathbf{1 0} \mathbf{~ p t s})$
(a) (2 pts) For prime p, define a p-Sylow subgroup of a finite group G.
(b) (4 pts) Prove that if a p-group H acts on a finite set X then $\# X \equiv \# \mathrm{Fix}_{H}(X) \bmod p$, where $\operatorname{Fix}_{H}(X)$ is the set of points in X fixed by all of H.
(c) ($4 \mathbf{~ p t s})$ For each prime p, prove that if P and Q are p-Sylow subgroups of a finite group G then P and Q are conjugate in G. (That is, prove the second part of the Sylow theorems.) You may use part (b).
3. ($\mathbf{1 0} \mathbf{~ p t s}$) Let F be a field.
(a) (5 pts) Prove that if $f(X) \neq 0$ in $F[X]$ then it has at most $\operatorname{deg} f$ different roots in F.
(b) $(5 \mathrm{pts})$ If $f\left(X_{1}, \ldots, X_{n}\right) \in F\left[X_{1}, \ldots, X_{n}\right]$ where F is infinite and $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $a_{1}, \ldots, a_{n} \in F$ then prove $f=0$ in $F\left[X_{1}, \ldots, X_{n}\right]$. You may use part (a).
4. ($\mathbf{1 0} \mathbf{~ p t s) ~ L e t ~} R$ be a nonzero commutative ring with identity. A simple R-module is a nonzero R-module M whose only submodules are $\{0\}$ and M. Let A, B, and C all be simple R-modules.
(a) (4 pts) Show that an R-module homomorphism $f: A \rightarrow B$ is either 0 or an isomorphism.
(b) (6 pts) Suppose that $A \oplus C \cong B \oplus C$ as R-modules. Prove that $A \cong B$ as R-modules. You may use part (a).

Caution! Part (b) can fail for modules that are not all simple. For some rings R there is an R-module M such that $M \oplus R \cong R^{2} \oplus R$ and $M \nsubseteq R^{2}$.
5. ($\mathbf{1 0} \mathbf{~ p t s})$ Let R be a commutative ring with identity.
(a) (2 pts) Define what it means for R to be a principal ideal domain.
(b) ($\mathbf{8} \mathbf{~ p t s}$) Prove that if R is a principal ideal domain, then every nonzero prime ideal in R is a maximal ideal.
6. (10 pts) Give examples as requested, with justification.
(a) (2.5 pts) A noncyclic group that is not isomorphic to a semidirect product of nontrivial groups.
(b) (2.5 pts) A prime p such that the ideal $\left(p, x^{2}-3\right)$ in $\mathbf{Z}[x]$ is maximal.
(c) $(\mathbf{2 . 5} \mathbf{~ p t s}) \mathrm{A}$ UFD that is not a Euclidean domain.
(d) (2.5 pts) A cyclic $\mathbf{R}[T]$-module that is 2-dimensional as a real vector space.

