Complex Functions Prelim, August 2019.

- \mathbb{D} denotes the unit disk: $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
- When using a known result in your working you must clearly state the result and make it clear that you have verified all required hypotheses.

1. (a) Find all functions f which are holomorphic on $\mathbb{C} \backslash\{0\}$ and have the property that $z^{2} f(z)$ is bounded on $\mathbb{C} \backslash\{0\}$.
(b) Find all functions f which are holomorphic on $\mathbb{C} \backslash\{0\}$ and have the property that $z \sin (z) f(z)$ is bounded on $\mathbb{C} \backslash\{0\}$.
2. Let $\gamma \subset \mathbb{C}$ be a positively-oriented simple closed curve not intersecting the set $\{-1,1\}$. Compute all possible values of the integral

$$
\int_{\gamma} \frac{2 d z}{z^{2}-1}
$$

and give examples of curves γ which realize each value.
3. State and prove the Schwarz Lemma, including what occurs in the case of equality.
4. (a) Show that a continuous function $f: \mathbb{D} \rightarrow \mathbb{C}$ that is holomorphic on the slit disc $\mathbb{D} \backslash[0,1)$ is holomorphic on \mathbb{D}.
(b) Give an example of a holomorphic function $f: \mathbb{D} \backslash[0,1) \rightarrow \mathbb{C}$ that has no holomorphic extension to \mathbb{D}.
5. In this problem, $p_{a}(z)=a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}$ is a cubic polynomial with coefficient vector $a=\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$.
(a) State Rouché's theorem.
(b) The polynomial $p_{(1,1,1,1)}(z)=1+z+z^{2}+z^{3}$ has a simple root at $z=-1$. Without using an explict solution of the cubic, show that there is a neighborhood $U \subset \mathbb{C}^{4}$ of $(1,1,1,1)$ such that if $a \in U$ then $p_{a}(z)$ has a unique root $r(a)$ close to -1 .
(c) Show that if the neighborhood U is sufficiently small then $a \mapsto r(a)$ is a continuous function on U.
6. Let $u: \overline{\mathbb{D}} \rightarrow \mathbb{R}$ be a positive and continuous function on the closed unit disc which is harmonic on \mathbb{D}. If $K \subset \mathbb{D}$ is compact, show that there is C (that may depend on K) such that

$$
\max _{K} u(x, y) \leq C \min _{K} u(x, y)
$$

7. Suppose f_{n} is a sequence of holomorphic functions on \mathbb{D} such that $\operatorname{Re}\left(f_{n}(z)\right)>0$ for all $z \in \mathbb{D}$ and all n.
(a) If $f_{n}(0)=1$ for all n, show that f_{n} has a subsequence that converges uniformly on compact subsets of \mathbb{D} to a holomorphic f for which $\operatorname{Re}(f(z))>0$ on \mathbb{D}.
(b) Is this true without the assumption that $f_{n}(0)=1$ for all n ?
