Topology Prelim, August 2019

1. Let X be a topological space and A, B be subsets of X. Prove or disprove the following set equalities.

(a) $X \setminus (A \cup B) = X \setminus (IntA \cup IntB).$ (b) $Int(X \setminus (A \cup B)) = X \setminus (\overline{A} \cup \overline{B}).$

2. Define the equivalence relation on \mathbb{R} such that $x \sim y$ if x - y is rational. Let \mathbb{R}/\sim be the quotient space with the quotient topology. Show that \mathbb{R}/\sim is not Hausdorff.

3. Let A be an open subset in \mathbb{R}^n , $n \geq 2$, whose boundary ∂A is connected. Is ∂A necessarily path-connected? Prove your assertion.

4. Show that if a path-connected, locally path-connected space X has $\pi_1(X)$ finite, then every map $X \to S^1$ is nullhomotopic, that is, it is homotopic to a constant map.

5. Compute the fundamental groups of the following spaces: (a) $X \subset \mathbb{R}^3$ is the complement of the union of *n* lines through the origin. (b) $\mathbb{T}^2 \setminus \{p\}$, where \mathbb{T}^2 is the torus.

6. Prove that every continuous map $h: D \to D$ has a fixed point, that is, a point x with h(x) = x. Here D is the closed unit disk in \mathbb{R}^2 .