Instructions: Solve 6 out of 8 problems. Any results that your responses rely upon must be stated clearly.

1. Let $s_{\Delta}:[-1,1] \rightarrow \mathbb{R}$ be a cubic spline function relative to the domain partition $\Delta \equiv\{-1,0,1\}$, so there is one knot at $x=0$. Consider the set V of all such s_{Δ} that satisfy the simultaneous conditions $s_{\Delta}(-1)=0, s_{\Delta}(1)=0, s_{\Delta}{ }^{\prime}(-1)=0$ and $s_{\Delta}{ }^{\prime}(1)=0$. Note that V is a vector space. Derive a basis for V (show the work for your derivation).
2. Given any $f:[a, b] \rightarrow \mathbb{R}$ that is continuous on $[a, b],-\infty<a<b<\infty$, denote the integral of f by

$$
I(f)=\int_{a}^{b} f(x) d x
$$

and let the two-point Gaussian quadrature approximation (Gauss-Legendre, specifically) be denoted by

$$
I_{2}(f)=\sum_{i=1}^{2} w_{i} f\left(x_{i}\right)
$$

with weights $w_{i}>0$ and abscissa $x_{i} \in(a, b)$, for $i=1,2$. In the case

$$
f(x)=\left(x-\frac{a+b}{2}\right)^{4}
$$

derive the explicit, algebraic formula for the quadrature error $I(f)-I_{2}(f)$ in terms of a and b.
3. Given any integer $n \geq 0$, let $\mathbb{P}_{n}[-1,1]$ denote the space of all real-valued polynomials of degree n or less on the domain $-1 \leq x \leq 1$. Let the subset of polynomials with lead coefficient 1 be denoted by $\tilde{\mathbb{P}}_{n}[-1,1]$:

$$
\tilde{\mathbb{P}}_{n}[-1,1]=\left\{p:[-1,1] \rightarrow \mathbb{R} \mid p(x)=x^{n}+c_{n-1} x^{n-1}+\ldots+c_{0},\left\{c_{n-1}, \ldots, c_{0}\right\} \subset \mathbb{R}\right\}
$$

Given any $p \in \tilde{\mathbb{P}}_{n+1}[-1,1]$, let $q \in \mathbb{P}_{n}[-1,1]$ denote the best uniform approximant of p in $\mathbb{P}_{n}[-1,1]$. Prove that $p-q$ is given by a multiple of a certain Chebyshev polynomial.
4. Let N be a positive integer and $\Delta x=2 \pi / N$ be a uniform spacing for points $x_{j}=-\pi+j \Delta x$, $j=0,1, \ldots, N$. Given $f:[-\pi, \pi] \rightarrow \mathbb{R}$, continuous, let us denote by $I(f)$ the integral

$$
I(f)=\int_{-\pi}^{\pi} f(x) d x
$$

Relative to the given domain partition, denote the composite trapezoidal approximation of $I(f)$ by $\tilde{I}(f)$. Prove that for $f(x)=\sin (x)$, the quadrature rule exhibits "superconvergence", in the sense that

$$
\lim _{\Delta x \rightarrow 0} \frac{I(f)-\tilde{I}(f)}{\Delta x^{2}}=0
$$

5. In this problem, $i=\sqrt{-1}$. Let $N>1$ be an integer and define points $x_{n}=2 \pi n / N$, for $n=0,1, \ldots, N-1$. Consider a function

$$
\phi_{m}(x)=\frac{\sin (x)}{N} \sum_{k=0}^{N-1} e^{i k\left(x-x_{m}\right)}
$$

for some fixed integer $m, 0 \leq m<N$. There is a unique phase polynomial of the form

$$
p(x)=\sum_{j=0}^{N-1} \beta_{j} e^{i j x}
$$

with the property that $p\left(x_{n}\right)=\phi_{m}\left(x_{n}\right)$ for all $n=0,1, \ldots, N-1$. Provide explicit formulas for the coefficients $\beta_{j}, 0 \leq j \leq N-1$, in terms of the subindex values j and m. No other indices should appear in your formulas (note that i and N are not indices here).
6. Denote by $\|\cdot\|_{V}$ some vector norm on \mathbb{C}^{n}, and let M_{n} be the space of all complex, square matrices with n rows. Given any $\mathbf{A} \in M_{n}$, denote the induced matrix norm by

$$
\operatorname{lub}_{V}(\mathbf{A})=\max _{\|\vec{x}\|_{V}=1}\|\mathbf{A} \vec{x}\|_{V}
$$

(a) Prove that $\operatorname{lub}_{V}(\cdot)$ is submultiplicative.
(b) Given any matrix norm $\|\cdot\|$ on M_{n} that is consistent with $\|\cdot\|_{V}$, prove that the condition number, $\kappa(\mathbf{A})$, defined with respect to the matrix norm $\|\cdot\|$ for an invertible \mathbf{A} satisfies

$$
1 \leq \kappa(\mathbf{A})
$$

(c) Now let the vector norm $\|\vec{x}\|_{V}$ be the maximum size of the entries of \vec{x}. In the linear system $\mathbf{A} \vec{x}=\vec{b}$, with \mathbf{A} defined below, assume that the vector \vec{b} may have up to a 10% relative error, as measured using the vector norm $\|\cdot\|_{V}$. Provide a numerical bound (with justification) for the corresponding relative error in computing the entries of \vec{x}.

$$
\mathbf{A}=\left[\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right]
$$

7. Let $w(x)=|x|$ be a weight function on the domain $-1 \leq x \leq 1$. Some w-orthogonal polynomials on the indicated domain can be defined as

$$
\begin{aligned}
\phi_{0}(x) & =1 \\
\phi_{1}(x) & =x \\
\phi_{2}(x) & =x \phi_{1}(x)-\frac{1}{2} \phi_{0}(x) \\
\phi_{3}(x) & =x \phi_{2}(x)-\frac{1}{6} \phi_{1}(x)
\end{aligned}
$$

Given a continuous function $f:[-1,1] \rightarrow \mathbb{R}$, let $I(f)$ be the integral

$$
I(f)=\int_{-1}^{1} w(x) f(x) d x
$$

Denote by $\tilde{I}(f)$ the the 3 -point Guassian quadrature rule to approximate $I(f)$. Specifically,

$$
\tilde{I}(f)=\sum_{i=1}^{3} w_{i} f\left(x_{i}\right) \approx I(f)
$$

where $\tilde{I}(f)=I(f)$ whenever f is a polynomial of order 5 or less. Derive the numerical values of w_{i} and x_{i} for $i=1,2,3$.
8. Let $f(x)=x^{4}$. Denote by $p(x)$ the cubic polynomial such that $p(-1)=f(-1), p(1)=f(1)$,
$p^{\prime}(1)=f^{\prime}(1)$ and $p^{\prime \prime}(1)=f^{\prime \prime}(1)$. Let $q(x)$ be the cubic polynomial that interpolates $f(x)$ at $x=-1,0,1,2$.
(a) Provide the explicit polynomial $p(x)$.
(b) Provide the explicit polynomial $q(x)$.
(c) Prove the following:

$$
\lim _{x \rightarrow-1} \frac{f(x)-p(x)}{f(x)-q(x)}=\frac{4}{3}
$$

