Geometry and Topology Exam

January 2020

Problem 1. Let X be a topological space. Prove or disprove the following assertions.

- 1. Let A_1, \ldots, A_k be subsets of X. Then $\overline{\bigcup_{i=1}^k A_i} = \bigcup_{i=1}^k \overline{A_i}$.
- 2. Let $\{B_i\}_{i=1}^{\infty}$ be subsets of X. Then $\overline{\bigcup_{i=1}^{\infty} B_i} = \bigcup_{i=1}^{\infty} \overline{B_i}$.

Problem 2. Let (X, d) be a complete metric space and $\{E_i\}_{i=1}^{\infty}$ be a sequence of nonempty closed subsets so that $E_{i+1} \subseteq E_i$ for all *i*. Suppose the diameter diam $(E_i) \to 0$ as $i \to \infty$. Show that $\bigcap_{i=1}^{\infty} E_i$ is nonempty and consists of precisely one point. (Recall that the diameter of a metric space *E* is defined by diam $(E) = \sup\{d(x, y) : x, y \in E\}$.)

Problem 3. Let \mathcal{Z} be the topology on \mathbb{R}^2 such that every nonempty open set of \mathcal{Z} is of the form $\mathbb{R}^2 \setminus \{ \text{at most finitely many points} \}$. Show that any continuous function $f : (\mathbb{R}^2, \mathcal{Z}) \to \mathbb{R}$ is constant, where \mathbb{R} is endowed with the standard topology.

Problem 4. Let E, X be topological spaces and $q: E \to X$ be a covering map. Show that the following statements are equivalent.

- 1. E is compact.
- 2. X is compact and the fiber $q^{-1}(x)$ is finite for all $x \in X$.

Problem 5. Let D^2 be a closed disk in \mathbb{R}^2 and S^1 be the boundary unit circle. Prove or disprove the following statements.

- 1. Let $f: S^1 \to D^2$ be a continuous map. Then f extends to a continuous map $F: D^2 \to D^2$ with $F|_{S^1} = f$.
- 2. There is a map $g: D^2 \to S^1$ such that $g|_{S^1}$ is the identity map on S^1 .

Problem 6. Let X, Y, Z be convex open subsets in \mathbb{R}^n , $n \ge 1$. Suppose $X \cap Y \cap Z \ne \emptyset$. Show that their union $X \cup Y \cup Z$ is simply-connected.