Hilbert Spaces

Ryan Corning

UConn Directed Reading Program
April 2017

Inner Product

Inner Product

Definition

Let \mathscr{X} be a vector space over scalar field \mathbb{F}. A inner product on \mathscr{X} is a function $\langle\cdot, \cdot\rangle: \mathscr{X} \times \mathscr{X} \rightarrow \mathbb{F}$ such that for all α, β in \mathbb{F} and x, y, z in \mathscr{X} the following are satisfied:

Inner Product

Definition

Let \mathscr{X} be a vector space over scalar field \mathbb{F}. A inner product on \mathscr{X} is a function $\langle\cdot, \cdot\rangle: \mathscr{X} \times \mathscr{X} \rightarrow \mathbb{F}$ such that for all α, β in \mathbb{F} and x, y, z in \mathscr{X} the following are satisfied:
(a) $\langle x, y\rangle=\overline{\langle y, x\rangle}$

Inner Product

Definition

Let \mathscr{X} be a vector space over scalar field \mathbb{F}. A inner product on \mathscr{X} is a function $\langle\cdot, \cdot\rangle: \mathscr{X} \times \mathscr{X} \rightarrow \mathbb{F}$ such that for all α, β in \mathbb{F} and x, y, z in \mathscr{X} the following are satisfied:
(a) $\langle x, y\rangle=\overline{\langle y, x\rangle}$
(b) $\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle$

Inner Product

Definition

Let \mathscr{X} be a vector space over scalar field \mathbb{F}. A inner product on \mathscr{X} is a function $\langle\cdot, \cdot\rangle: \mathscr{X} \times \mathscr{X} \rightarrow \mathbb{F}$ such that for all α, β in \mathbb{F} and x, y, z in \mathscr{X} the following are satisfied:
(a) $\langle x, y\rangle=\overline{\langle y, x\rangle}$
(b) $\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle$
(c) $\langle x, x\rangle \geq 0$

Inner Product

Definition

Let \mathscr{X} be a vector space over scalar field \mathbb{F}. A inner product on \mathscr{X} is a function $\langle\cdot, \cdot\rangle: \mathscr{X} \times \mathscr{X} \rightarrow \mathbb{F}$ such that for all α, β in \mathbb{F} and x, y, z in \mathscr{X} the following are satisfied:
(a) $\langle x, y\rangle=\overline{\langle y, x\rangle}$
(b) $\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle$
(c) $\langle x, x\rangle \geq 0$
(d) $\langle x, x\rangle=0 \Longleftrightarrow x=0$

Inner Product

Definition

Let \mathscr{X} be a vector space over scalar field \mathbb{F}. A inner product on \mathscr{X} is a function $\langle\cdot, \cdot\rangle: \mathscr{X} \times \mathscr{X} \rightarrow \mathbb{F}$ such that for all α, β in \mathbb{F} and x, y, z in \mathscr{X} the following are satisfied:
(a) $\langle x, y\rangle=\overline{\langle y, x\rangle}$
(b) $\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle$
(c) $\langle x, x\rangle \geq 0$
(d) $\langle x, x\rangle=0 \Longleftrightarrow x=0$

The norm, $\|x\|=\langle x, x\rangle^{\frac{1}{2}}$, induced by an inner product defines a metric $d(x, y)=\|x-y\|$ on vector space \mathscr{X}.

Hilbert Space

Hilbert Space

Definition

A Hilbert space is a vector space \mathscr{H} over \mathbb{F} with an inner product $\langle\cdot, \cdot\rangle$ such that relative to the metric induced by the norm, \mathscr{H} is a complete metric space.

Hilbert Space

Hilbert Space

Example

Let I be a set, and let $\ell^{2}(I)$ be the set of all functions $x: I \rightarrow \mathbb{F}$ such that $x(i)=0$ for all but a countable number of i and

$$
\sum_{i \in I}|x(i)|^{2}<\infty
$$

Hilbert Space

Example

Let I be a set, and let $\ell^{2}(I)$ be the set of all functions $x: I \rightarrow \mathbb{F}$ such that $x(i)=0$ for all but a countable number of i and

$$
\sum_{i \in I}|x(i)|^{2}<\infty
$$

For x, y in $\ell^{2}(I)$ let

$$
\langle x, y\rangle=\sum_{i} x(i) \overline{y(i)}
$$

Hilbert Space

Example

Let I be a set, and let $\ell^{2}(I)$ be the set of all functions $x: I \rightarrow \mathbb{F}$ such that $x(i)=0$ for all but a countable number of i and

$$
\sum_{i \in I}|x(i)|^{2}<\infty
$$

For x, y in $\ell^{2}(I)$ let

$$
\langle x, y\rangle=\sum_{i} x(i) \overline{y(i)}
$$

Then $\ell^{2}(I)$ is a Hilbert space.

Bounded Linear Functionals

Bounded Linear Functionals

Definition
A bounded linear functional L on \mathscr{H} is a linear functional for which there is a constant $c>0$ such that $|L(h)| \leq c\|h\|$ for all h in \mathscr{H}.

Bounded Linear Functionals

Definition
A bounded linear functional L on \mathscr{H} is a linear functional for which there is a constant $c>0$ such that $|L(h)| \leq c\|h\|$ for all h in \mathscr{H}.

Proposition
A linear functional is bounded if and only if it is continuous.

Bounded Linear Functionals

Bounded Linear Functionals

Proof (Bounded \Rightarrow Continuous).

Bounded Linear Functionals

Proof (Bounded \Rightarrow Continuous).

- Let $L: \mathscr{H} \rightarrow \mathbb{F}$ be a bounded linear functional. Let $v, h \in \mathscr{H}$ such that $h \neq 0$.

Bounded Linear Functionals

Proof (Bounded \Rightarrow Continuous).

- Let $L: \mathscr{H} \rightarrow \mathbb{F}$ be a bounded linear functional. Let $v, h \in \mathscr{H}$ such that $h \neq 0$.
- Then

$$
|L(v+h)-L(v)|=|L(h)| \leq c|h|
$$

for some constant $c>0$.

Bounded Linear Functionals

Proof (Bounded \Rightarrow Continuous).

- Let $L: \mathscr{H} \rightarrow \mathbb{F}$ be a bounded linear functional. Let $v, h \in \mathscr{H}$ such that $h \neq 0$.
- Then

$$
|L(v+h)-L(v)|=|L(h)| \leq c|h|
$$

for some constant $c>0$.

- Therefore L is Lipschitz continuous.

Bounded Linear Functionals

Proof (Bounded \Rightarrow Continuous).

- Let $L: \mathscr{H} \rightarrow \mathbb{F}$ be a bounded linear functional. Let $v, h \in \mathscr{H}$ such that $h \neq 0$.
- Then

$$
|L(v+h)-L(v)|=|L(h)| \leq c|h|
$$

for some constant $c>0$.

- Therefore L is Lipschitz continuous.
- Lipschitz continuity implies continuity.

The Riesz Representation Theorem

The Riesz Representation Theorem

Theroem
If $L: \mathscr{H} \rightarrow \mathbb{F}$ is a bounded linear functional, then there is a unique vector h_{0} in \mathscr{H} such that $L(h)=\left\langle h, h_{0}\right\rangle$ for every h in \mathscr{H}. Moreover, $\|L\|=\left\|h_{0}\right\|$.

Example: The Riesz Representation Theorem

Example: The Riesz Representation Theorem

Proposition
$L^{2}[a, b]=\left\{f:\left.[a, b] \rightarrow \mathbb{F}\left|\int_{a}^{b}\right| f(t)\right|^{2} d t<\infty\right\}$ is a Hilbert space with inner product given by

$$
\langle f, g\rangle=\int_{a}^{b} f(t) \overline{g(t)} d t
$$

Example: The Riesz Representation Theorem

Proposition
$L^{2}[a, b]=\left\{f:\left.[a, b] \rightarrow \mathbb{F}\left|\int_{a}^{b}\right| f(t)\right|^{2} d t<\infty\right\}$ is a Hilbert space with inner product given by

$$
\langle f, g\rangle=\int_{a}^{b} f(t) \overline{g(t)} d t
$$

Corollary
If $F: L^{2}[a, b] \rightarrow \mathbb{F}$ is a bounded linear functional, then there is a unique h_{0} in $\hbar^{2}[a, b]$ such that

$$
F(h)=\int h \overline{h_{0}} d t
$$

for all h in $L^{2}[a, b]$.

Orthogonality

Orthogonality

Definition
For Hilbert space \mathscr{H} and $f, g \in \mathscr{H}, f$ and g are orthogonal, denoted $f \perp g$, if $\langle f, g\rangle=0$.

Orthogonality

Definition
For Hilbert space \mathscr{H} and $f, g \in \mathscr{H}, f$ and g are orthogonal, denoted $f \perp g$, if $\langle f, g\rangle=0$.

Definition
An orthonormal subset of a Hilbert space \mathscr{H} is a subset \mathscr{E} such that:

Orthogonality

Definition
For Hilbert space \mathscr{H} and $f, g \in \mathscr{H}, f$ and g are orthogonal, denoted $f \perp g$, if $\langle f, g\rangle=0$.

Definition
An orthonormal subset of a Hilbert space \mathscr{H} is a subset \mathscr{E} such that:
(a) if $e_{1}, e_{2} \in \mathscr{E}$ and $e_{1} \neq e_{2}$, then $e_{1} \perp e_{2}$ for $e \in \mathscr{E},\|e\|=1$

Orthogonality

Definition
For Hilbert space \mathscr{H} and $f, g \in \mathscr{H}, f$ and g are orthogonal, denoted $f \perp g$, if $\langle f, g\rangle=0$.

Definition
An orthonormal subset of a Hilbert space \mathscr{H} is a subset \mathscr{E} such that:
(a) if $e_{1}, e_{2} \in \mathscr{E}$ and $e_{1} \neq e_{2}$, then $e_{1} \perp e_{2}$ for $e \in \mathscr{E},\|e\|=1$
(b) for $e \in \mathscr{E},\|e\|=1$

Orthogonality

Definition
For Hilbert space \mathscr{H} and $f, g \in \mathscr{H}, f$ and g are orthogonal, denoted $f \perp g$, if $\langle f, g\rangle=0$.

Definition
An orthonormal subset of a Hilbert space \mathscr{H} is a subset \mathscr{E} such that:
(a) if $e_{1}, e_{2} \in \mathscr{E}$ and $e_{1} \neq e_{2}$, then $e_{1} \perp e_{2}$ for $e \in \mathscr{E},\|e\|=1$
(b) for $e \in \mathscr{E},\|e\|=1$

Definition
A basis of \mathscr{H} is a maximal orthonormal set.

Bases

Bases

Example

Let $\mathscr{H}=\ell^{2}(i)$ as before. For each $i \in I$, define e_{i} in \mathscr{H} by $e_{i}(i)=1$ and $e_{j}(j)=0$ for $i \neq j$. Then $\left\{e_{i} \mid i \in I\right\}$ is a basis.

Bases

Example

Let $\mathscr{H}=\ell^{2}(i)$ as before. For each $i \in I$, define e_{i} in \mathscr{H} by $e_{i}(i)=1$ and $e_{j}(j)=0$ for $i \neq j$. Then $\left\{e_{i} \mid i \in I\right\}$ is a basis.

Example
Let $\mathscr{H}=L_{\mathbb{C}}^{2}[0,2 \pi]$. For $n \in \mathbb{Z}$ define $e_{n} \in \mathscr{H}$ by $e_{n}(t)=\frac{1}{\sqrt{2 \pi}} e^{i n t}$. Then $\left\{e_{n} \mid n \in \mathbb{Z}\right\}$ is not only an orthonormal set, but also a basis for \mathscr{H}.

Bases for Infinite-Dimensional Spaces

Bases for Infinite-Dimensional Spaces

Proposition
A basis for an infinite-dimensional Hilbert space is never a Hamel basis.

Bases for Infinite-Dimensional Spaces

Proposition
A basis for an infinite-dimensional Hilbert space is never a Hamel basis.

Example

Bases for Infinite-Dimensional Spaces

Proposition
A basis for an infinite-dimensional Hilbert space is never a Hamel basis.

Example

Bases for Infinite-Dimensional Spaces

Proposition
A basis for an infinite-dimensional Hilbert space is never a Hamel basis.

Example

- Consider the space $\ell^{2}(\mathbb{N})$, with basis $\{(1,0,0, \ldots),(0,1,0,0, \ldots),(0,0,1,0, \ldots), \ldots\}$.

Bases for Infinite-Dimensional Spaces

Proposition

A basis for an infinite-dimensional Hilbert space is never a Hamel basis.

Example

- Consider the space $\ell^{2}(\mathbb{N})$, with basis $\{(1,0,0, \ldots),(0,1,0,0, \ldots),(0,0,1,0, \ldots), \ldots\}$.
- We know

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}<\infty
$$

Bases for Infinite-Dimensional Spaces

Proposition

A basis for an infinite-dimensional Hilbert space is never a Hamel basis.

Example

- Consider the space $\ell^{2}(\mathbb{N})$, with basis $\{(1,0,0, \ldots),(0,1,0,0, \ldots),(0,0,1,0, \ldots), \ldots\}$.
- We know

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}<\infty
$$

- So $\left(\frac{1}{1}, \frac{1}{4}, \frac{1}{9}, \ldots\right) \in \ell^{2}(\mathbb{N})$.

Bases for Infinite-Dimensional Spaces

Proposition

A basis for an infinite-dimensional Hilbert space is never a Hamel basis.

Example

- Consider the space $\ell^{2}(\mathbb{N})$, with basis $\{(1,0,0, \ldots),(0,1,0,0, \ldots),(0,0,1,0, \ldots), \ldots\}$.
- We know

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}<\infty
$$

- So $\left(\frac{1}{1}, \frac{1}{4}, \frac{1}{9}, \ldots\right) \in \ell^{2}(\mathbb{N})$.
- But this element can't be written as a finite sum of basis elements.

Isomorphisms between Hilbert spaces

Isomorphisms between Hilbert spaces

Definition

If \mathscr{H} and \mathscr{K} are Hilbert spaces, an isomorphism between \mathscr{H} and \mathscr{K} is a linear surjection $U: \mathscr{H} \rightarrow \mathscr{K}$ such that

$$
\langle U h, U g\rangle=\langle h, g\rangle
$$

for all h, g in \mathscr{H}.

Isomorphisms between Hilbert spaces

Definition

If \mathscr{H} and \mathscr{K} are Hilbert spaces, an isomorphism between \mathscr{H} and \mathscr{K} is a linear surjection $U: \mathscr{H} \rightarrow \mathscr{K}$ such that

$$
\langle U h, U g\rangle=\langle h, g\rangle
$$

for all h, g in \mathscr{H}.
Proposition
If linear map U is an isomorphism, then U is an isometry.

Isomorphisms between Hilbert spaces

Isomorphisms between Hilbert spaces

Theroem
Two Hilbert spaces are isomorphic if and only if they have the same dimension.

Isomorphisms between Hilbert spaces

Theroem
Two Hilbert spaces are isomorphic if and only if they have the same dimension.

Proof (Sketch).

Isomorphisms between Hilbert spaces

Theroem
Two Hilbert spaces are isomorphic if and only if they have the same dimension.

Proof (Sketch).

- Let \mathscr{E}, \mathscr{F} be bases for Hilbert spaces \mathscr{H}, \mathscr{K} respectively, such that $\operatorname{dim} \mathscr{H}=\operatorname{dim} \mathscr{K}$.

Isomorphisms between Hilbert spaces

Theroem
Two Hilbert spaces are isomorphic if and only if they have the same dimension.

Proof (Sketch).

- Let \mathscr{E}, \mathscr{F} be bases for Hilbert spaces \mathscr{H}, \mathscr{K} respectively, such that $\operatorname{dim} \mathscr{H}=\operatorname{dim} \mathscr{K}$.
- Construct an isomorphism from \mathscr{H} to $\ell^{2}(\mathscr{E})$.

Isomorphisms between Hilbert spaces

Theroem
Two Hilbert spaces are isomorphic if and only if they have the same dimension.

Proof (Sketch).

- Let \mathscr{E}, \mathscr{F} be bases for Hilbert spaces \mathscr{H}, \mathscr{K} respectively, such that $\operatorname{dim} \mathscr{H}=\operatorname{dim} \mathscr{K}$.
- Construct an isomorphism from \mathscr{H} to $\ell^{2}(\mathscr{E})$.
- Do the same for \mathscr{K} to $\ell^{2}(\mathscr{F})$.

Isomorphisms between Hilbert spaces

Theroem
Two Hilbert spaces are isomorphic if and only if they have the same dimension.

Proof (Sketch).

- Let \mathscr{E}, \mathscr{F} be bases for Hilbert spaces \mathscr{H}, \mathscr{K} respectively, such that $\operatorname{dim} \mathscr{H}=\operatorname{dim} \mathscr{K}$.
- Construct an isomorphism from \mathscr{H} to $\ell^{2}(\mathscr{E})$.
- Do the same for \mathscr{K} to $\ell^{2}(\mathscr{F})$.
- Since $|\mathscr{E}|=|\mathscr{F}|, \ell^{2}(\mathscr{E})$ must be isomorphic to $\ell^{2}(\mathscr{F})$.

Isomorphisms between Hilbert spaces

Theroem
Two Hilbert spaces are isomorphic if and only if they have the same dimension.

Proof (Sketch).

- Let \mathscr{E}, \mathscr{F} be bases for Hilbert spaces \mathscr{H}, \mathscr{K} respectively, such that $\operatorname{dim} \mathscr{H}=\operatorname{dim} \mathscr{K}$.
- Construct an isomorphism from \mathscr{H} to $\ell^{2}(\mathscr{E})$.
- Do the same for \mathscr{K} to $\ell^{2}(\mathscr{F})$.
- Since $|\mathscr{E}|=|\mathscr{F}|, \ell^{2}(\mathscr{E})$ must be isomorphic to $\ell^{2}(\mathscr{F})$.
- Conclude \mathscr{H} is isomorphic to \mathscr{K}.

Further Topics Covered

- Linear Operators on Hibert spaces
- Fourier series
- Sturm-Liouville systems

Texts Used

- A Course in Functional Analysis by John B. Conway
- An Introduction to Hilbert Spaces based on the notes of Rodica D. Costin
- Introduction to Partial Differential Equations and Hilbert Space Methods by Karl E. Gustafson
- Ben Russo's brain

