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Inner Product

Definition
Let X be a vector space over scalar field F. A inner product on
X is a function 〈·, ·〉 : X ×X → F such that for all α, β in F and
x , y , z in X the following are satisfied:

(a) 〈x , y〉 = 〈y , x〉
(b) 〈αx + βy , z〉 = α〈x , z〉+ β〈y , z〉
(c) 〈x , x〉 ≥ 0

(d) 〈x , x〉 = 0⇐⇒ x = 0

The norm, ‖x‖ = 〈x , x〉
1
2 , induced by an inner product defines a

metric d(x , y) = ‖x − y‖ on vector space X .
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Hilbert Space

Definition
A Hilbert space is a vector space H over F with an inner product
〈·, ·〉 such that relative to the metric induced by the norm, H is a
complete metric space.



Hilbert Space

Definition
A Hilbert space is a vector space H over F with an inner product
〈·, ·〉 such that relative to the metric induced by the norm, H is a
complete metric space.



Hilbert Space

Example

Let I be a set, and let `2(I ) be the set of all functions x : I → F
such that x(i) = 0 for all but a countable number of i and∑

i∈I
|x(i)|2 <∞.

For x , y in `2(I ) let

〈x , y〉 =
∑
i

x(i)y(i).

Then `2(I ) is a Hilbert space.
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Bounded Linear Functionals

Definition
A bounded linear functional L on H is a linear functional for
which there is a constant c > 0 such that |L(h)| ≤ c‖h‖ for all h in
H .

Proposition

A linear functional is bounded if and only if it is continuous.



Bounded Linear Functionals

Definition
A bounded linear functional L on H is a linear functional for
which there is a constant c > 0 such that |L(h)| ≤ c‖h‖ for all h in
H .

Proposition

A linear functional is bounded if and only if it is continuous.



Bounded Linear Functionals

Definition
A bounded linear functional L on H is a linear functional for
which there is a constant c > 0 such that |L(h)| ≤ c‖h‖ for all h in
H .

Proposition

A linear functional is bounded if and only if it is continuous.



Bounded Linear Functionals

Proof (Bounded ⇒ Continuous).

I Let L : H → F be a bounded linear functional. Let v , h ∈H
such that h 6= 0.

I Then
|L(v + h)− L(v)| = |L(h)| ≤ c |h|

for some constant c > 0.

I Therefore L is Lipschitz continuous.

I Lipschitz continuity implies continuity.
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The Riesz Representation Theorem

Theroem
If L : H → F is a bounded linear functional, then there is a unique
vector h0 in H such that L(h) = 〈h, h0〉 for every h in H .
Moreover, ‖L‖ = ‖h0‖.
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Example: The Riesz Representation Theorem

Proposition

L2[a, b] = {f : [a, b]→ F |
∫ b
a |f (t)|2dt <∞} is a Hilbert space

with inner product given by

〈f , g〉 =

∫ b

a
f (t)g(t)dt.

Corollary

If F : L2[a, b]→ F is a bounded linear functional, then there is a
unique h0 in  L2[a, b] such that

F (h) =

∫
hh0dt

for all h in L2[a, b].
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Orthogonality

Definition
For Hilbert space H and f , g ∈H , f and g are orthogonal,
denoted f ⊥ g , if 〈f , g〉 = 0.

Definition
An orthonormal subset of a Hilbert space H is a subset E such
that:

(a) if e1, e2 ∈ E and e1 6= e2, then e1 ⊥ e2 for e ∈ E , ‖e‖ = 1

(b) for e ∈ E , ‖e‖ = 1

Definition
A basis of H is a maximal orthonormal set.
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Bases

Example

Let H = `2(i) as before. For each i ∈ I , define ei in H by
ei (i) = 1 and ej(j) = 0 for i 6= j . Then {ei | i ∈ I} is a basis.

Example

Let H = L2
C[0, 2π]. For n ∈ Z define en ∈H by en(t) = 1√

2π
e int .

Then {en | n ∈ Z} is not only an orthonormal set, but also a basis
for H .
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Bases for Infinite-Dimensional Spaces

Proposition

A basis for an infinite-dimensional Hilbert space is never a Hamel
basis.

Example

I Consider the space `2(N), with basis
{(1, 0, 0, ...), (0, 1, 0, 0, ...), (0, 0, 1, 0, ...), ...}.

I We know
∞∑
n=1

1

n2
=
π2

6
<∞.

I So (11 ,
1
4 ,

1
9 , ...) ∈ `

2(N).

I But this element can’t be written as a finite sum of basis
elements.
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Isomorphisms between Hilbert spaces

Definition
If H and K are Hilbert spaces, an isomorphism between H and
K is a linear surjection U : H → K such that

〈Uh,Ug〉 = 〈h, g〉

for all h, g in H .

Proposition

If linear map U is an isomorphism, then U is an isometry.
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Isomorphisms between Hilbert spaces

Theroem
Two Hilbert spaces are isomorphic if and only if they have the
same dimension.

Proof (Sketch).

I Let E ,F be bases for Hilbert spaces H ,K respectively, such
that dim H = dim K .

I Construct an isomorphism from H to `2(E ).

I Do the same for K to `2(F ).

I Since |E | = |F |, `2(E ) must be isomorphic to `2(F ).

I Conclude H is isomorphic to K .
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Further Topics Covered

I Linear Operators on Hibert spaces

I Fourier series

I Sturm-Liouville systems



Texts Used

I A Course in Functional Analysis by John B. Conway

I An Introduction to Hilbert Spaces based on the notes of
Rodica D. Costin

I Introduction to Partial Differential Equations and Hilbert
Space Methods by Karl E. Gustafson

I Ben Russo’s brain


