Ryan Corning

UConn Directed Reading Program

April 2017

・ロト・日本・モト・モート ヨー うへで

<□ > < @ > < E > < E > E のQ @

Definition

Let \mathscr{X} be a vector space over scalar field \mathbb{F} . A **inner product** on \mathscr{X} is a function $\langle \cdot, \cdot \rangle : \mathscr{X} \times \mathscr{X} \to \mathbb{F}$ such that for all α, β in \mathbb{F} and x, y, z in \mathscr{X} the following are satisfied:

Definition

Let \mathscr{X} be a vector space over scalar field \mathbb{F} . A **inner product** on \mathscr{X} is a function $\langle \cdot, \cdot \rangle : \mathscr{X} \times \mathscr{X} \to \mathbb{F}$ such that for all α, β in \mathbb{F} and x, y, z in \mathscr{X} the following are satisfied:

(a)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

Definition

Let \mathscr{X} be a vector space over scalar field \mathbb{F} . A **inner product** on \mathscr{X} is a function $\langle \cdot, \cdot \rangle : \mathscr{X} \times \mathscr{X} \to \mathbb{F}$ such that for all α, β in \mathbb{F} and x, y, z in \mathscr{X} the following are satisfied:

(a)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

(b) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$

Definition

Let \mathscr{X} be a vector space over scalar field \mathbb{F} . A **inner product** on \mathscr{X} is a function $\langle \cdot, \cdot \rangle : \mathscr{X} \times \mathscr{X} \to \mathbb{F}$ such that for all α, β in \mathbb{F} and x, y, z in \mathscr{X} the following are satisfied:

(a)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

(b) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$
(c) $\langle x, x \rangle \ge 0$

Definition

Let \mathscr{X} be a vector space over scalar field \mathbb{F} . A **inner product** on \mathscr{X} is a function $\langle \cdot, \cdot \rangle : \mathscr{X} \times \mathscr{X} \to \mathbb{F}$ such that for all α, β in \mathbb{F} and x, y, z in \mathscr{X} the following are satisfied:

(a)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

(b) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$
(c) $\langle x, x \rangle \ge 0$
(d) $\langle x, x \rangle = 0 \iff x = 0$

Definition

Let \mathscr{X} be a vector space over scalar field \mathbb{F} . A **inner product** on \mathscr{X} is a function $\langle \cdot, \cdot \rangle : \mathscr{X} \times \mathscr{X} \to \mathbb{F}$ such that for all α, β in \mathbb{F} and x, y, z in \mathscr{X} the following are satisfied:

(a)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

(b) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$
(c) $\langle x, x \rangle \ge 0$
(d) $\langle x, x \rangle = 0 \iff x = 0$

The **norm**, $||x|| = \langle x, x \rangle^{\frac{1}{2}}$, induced by an inner product defines a metric d(x, y) = ||x - y|| on vector space \mathscr{X} .

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

Definition

A **Hilbert space** is a vector space \mathscr{H} over \mathbb{F} with an inner product $\langle \cdot, \cdot \rangle$ such that relative to the metric induced by the norm, \mathscr{H} is a complete metric space.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

Example

Let *I* be a set, and let $\ell^2(I)$ be the set of all functions $x : I \to \mathbb{F}$ such that x(i) = 0 for all but a countable number of *i* and

$$\sum_{i\in I}|x(i)|^2<\infty.$$

Example

Let *I* be a set, and let $\ell^2(I)$ be the set of all functions $x : I \to \mathbb{F}$ such that x(i) = 0 for all but a countable number of *i* and

$$\sum_{i\in I}|x(i)|^2<\infty.$$

For x, y in $\ell^2(I)$ let

$$\langle x, y \rangle = \sum_{i} x(i) \overline{y(i)}.$$

Example

Let *I* be a set, and let $\ell^2(I)$ be the set of all functions $x : I \to \mathbb{F}$ such that x(i) = 0 for all but a countable number of *i* and

$$\sum_{i\in I}|x(i)|^2<\infty.$$

For x, y in $\ell^2(I)$ let

$$\langle x, y \rangle = \sum_{i} x(i) \overline{y(i)}.$$

Then $\ell^2(I)$ is a Hilbert space.

Definition

A **bounded linear functional** L on \mathcal{H} is a linear functional for which there is a constant c > 0 such that $|L(h)| \le c ||h||$ for all h in \mathcal{H} .

Definition

A **bounded linear functional** L on \mathcal{H} is a linear functional for which there is a constant c > 0 such that $|L(h)| \le c ||h||$ for all h in \mathcal{H} .

Proposition

A linear functional is bounded if and only if it is continuous.

Proof (Bounded \Rightarrow Continuous).

Proof (Bounded \Rightarrow Continuous).

▶ Let $L : \mathscr{H} \to \mathbb{F}$ be a bounded linear functional. Let $v, h \in \mathscr{H}$ such that $h \neq 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof (Bounded \Rightarrow Continuous).

- ▶ Let $L : \mathscr{H} \to \mathbb{F}$ be a bounded linear functional. Let $v, h \in \mathscr{H}$ such that $h \neq 0$.
- Then

$$|L(v+h)-L(v)|=|L(h)|\leq c|h|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

for some constant c > 0.

Proof (Bounded \Rightarrow Continuous).

- ▶ Let $L : \mathscr{H} \to \mathbb{F}$ be a bounded linear functional. Let $v, h \in \mathscr{H}$ such that $h \neq 0$.
- Then

$$|L(v + h) - L(v)| = |L(h)| \le c|h|$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for some constant c > 0.

► Therefore *L* is Lipschitz continuous.

Proof (Bounded \Rightarrow Continuous).

▶ Let $L : \mathscr{H} \to \mathbb{F}$ be a bounded linear functional. Let $v, h \in \mathscr{H}$ such that $h \neq 0$.

Then

$$|L(v+h)-L(v)|=|L(h)|\leq c|h|$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for some constant c > 0.

- ► Therefore *L* is Lipschitz continuous.
- Lipschitz continuity implies continuity.

The Riesz Representation Theorem

<ロト (個) (目) (目) (目) (0) (0)</p>

The Riesz Representation Theorem

Theroem

If $L : \mathscr{H} \to \mathbb{F}$ is a bounded linear functional, then there is a unique vector h_0 in \mathscr{H} such that $L(h) = \langle h, h_0 \rangle$ for every h in \mathscr{H} . Moreover, $\|L\| = \|h_0\|$.

Example: The Riesz Representation Theorem

Example: The Riesz Representation Theorem

Proposition $L^{2}[a, b] = \{f : [a, b] \to \mathbb{F} \mid \int_{a}^{b} |f(t)|^{2} dt < \infty\}$ is a Hilbert space with inner product given by

$$\langle f,g\rangle = \int_a^b f(t)\overline{g(t)}dt.$$

Example: The Riesz Representation Theorem

Proposition $L^{2}[a, b] = \{f : [a, b] \to \mathbb{F} \mid \int_{a}^{b} |f(t)|^{2} dt < \infty\}$ is a Hilbert space with inner product given by

$$\langle f,g\rangle = \int_a^b f(t)\overline{g(t)}dt.$$

Corollary

If $F : L^2[a, b] \to \mathbb{F}$ is a bounded linear functional, then there is a unique h_0 in $L^2[a, b]$ such that

$$F(h)=\int h\overline{h_0}dt$$

for all h in $L^2[a, b]$.

Definition

For Hilbert space \mathscr{H} and $f, g \in \mathscr{H}$, f and g are **orthogonal**, denoted $f \perp g$, if $\langle f, g \rangle = 0$.

Definition

For Hilbert space \mathscr{H} and $f, g \in \mathscr{H}$, f and g are **orthogonal**, denoted $f \perp g$, if $\langle f, g \rangle = 0$.

Definition

An orthonormal subset of a Hilbert space $\mathscr H$ is a subset $\mathscr E$ such that:

Definition

For Hilbert space \mathscr{H} and $f, g \in \mathscr{H}$, f and g are **orthogonal**, denoted $f \perp g$, if $\langle f, g \rangle = 0$.

Definition

An **orthonormal** subset of a Hilbert space $\mathscr H$ is a subset $\mathscr E$ such that:

(a) if $e_1, e_2 \in \mathscr{E}$ and $e_1 \neq e_2$, then $e_1 \perp e_2$ for $e \in \mathscr{E}$, $\|e\| = 1$

Definition

For Hilbert space \mathscr{H} and $f, g \in \mathscr{H}$, f and g are **orthogonal**, denoted $f \perp g$, if $\langle f, g \rangle = 0$.

Definition

An **orthonormal** subset of a Hilbert space $\mathscr H$ is a subset $\mathscr E$ such that:

(a) if $e_1, e_2 \in \mathscr{E}$ and $e_1 \neq e_2$, then $e_1 \perp e_2$ for $e \in \mathscr{E}$, ||e|| = 1(b) for $e \in \mathscr{E}$, ||e|| = 1

Definition

For Hilbert space \mathscr{H} and $f, g \in \mathscr{H}$, f and g are **orthogonal**, denoted $f \perp g$, if $\langle f, g \rangle = 0$.

Definition

An **orthonormal** subset of a Hilbert space $\mathscr H$ is a subset $\mathscr E$ such that:

(a) if $e_1, e_2 \in \mathscr{E}$ and $e_1 \neq e_2$, then $e_1 \perp e_2$ for $e \in \mathscr{E}$, ||e|| = 1(b) for $e \in \mathscr{E}$, ||e|| = 1

Definition

A **basis** of \mathscr{H} is a maximal orthonormal set.

Bases

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 - のへの

Bases

Example

Let $\mathscr{H} = \ell^2(i)$ as before. For each $i \in I$, define e_i in \mathscr{H} by $e_i(i) = 1$ and $e_j(j) = 0$ for $i \neq j$. Then $\{e_i \mid i \in I\}$ is a basis.

Bases

Example

Let $\mathscr{H} = \ell^2(i)$ as before. For each $i \in I$, define e_i in \mathscr{H} by $e_i(i) = 1$ and $e_j(j) = 0$ for $i \neq j$. Then $\{e_i \mid i \in I\}$ is a basis.

Example

Let $\mathscr{H} = L^2_{\mathbb{C}}[0, 2\pi]$. For $n \in \mathbb{Z}$ define $e_n \in \mathscr{H}$ by $e_n(t) = \frac{1}{\sqrt{2\pi}}e^{int}$. Then $\{e_n \mid n \in \mathbb{Z}\}$ is not only an orthonormal set, but also a basis for \mathscr{H} .

Proposition

A basis for an infinite-dimensional Hilbert space is never a Hamel basis.

Proposition

A basis for an infinite-dimensional Hilbert space is never a Hamel basis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Proposition

A basis for an infinite-dimensional Hilbert space is never a Hamel basis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Proposition

A basis for an infinite-dimensional Hilbert space is never a Hamel basis.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

• Consider the space $\ell^2(\mathbb{N})$, with basis $\{(1,0,0,...), (0,1,0,0,...), (0,0,1,0,...), ...\}.$

Proposition

A basis for an infinite-dimensional Hilbert space is never a Hamel basis.

Example

- Consider the space $\ell^2(\mathbb{N})$, with basis $\{(1,0,0,...), (0,1,0,0,...), (0,0,1,0,...), ...\}.$
- We know

$$\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}<\infty.$$

Proposition

A basis for an infinite-dimensional Hilbert space is never a Hamel basis.

Example

• Consider the space $\ell^2(\mathbb{N})$, with basis $\{(1,0,0,...), (0,1,0,0,...), (0,0,1,0,...), ...\}.$

We know

$$\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}<\infty.$$

• So $(\frac{1}{1}, \frac{1}{4}, \frac{1}{9}, ...) \in \ell^2(\mathbb{N}).$

Proposition

A basis for an infinite-dimensional Hilbert space is never a Hamel basis.

Example

• Consider the space $\ell^2(\mathbb{N})$, with basis $\{(1,0,0,...), (0,1,0,0,...), (0,0,1,0,...), ...\}.$

We know

$$\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}<\infty.$$

- So $(\frac{1}{1}, \frac{1}{4}, \frac{1}{9}, ...) \in \ell^2(\mathbb{N}).$
- But this element can't be written as a finite sum of basis elements.

<ロト (個) (目) (目) (目) (0) (0)</p>

Definition

If \mathscr{H} and \mathscr{K} are Hilbert spaces, an **isomorphism** between \mathscr{H} and \mathscr{K} is a linear surjection $U: \mathscr{H} \to \mathscr{K}$ such that

$$\langle Uh, Ug \rangle = \langle h, g \rangle$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for all h, g in \mathcal{H} .

Definition

If \mathscr{H} and \mathscr{K} are Hilbert spaces, an **isomorphism** between \mathscr{H} and \mathscr{K} is a linear surjection $U: \mathscr{H} \to \mathscr{K}$ such that

$$\langle Uh, Ug \rangle = \langle h, g \rangle$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for all h, g in \mathcal{H} .

Proposition

If linear map U is an isomorphism, then U is an isometry.

<ロト (個) (目) (目) (目) (0) (0)</p>

Theroem

Two Hilbert spaces are isomorphic if and only if they have the same dimension.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theroem

Two Hilbert spaces are isomorphic if and only if they have the same dimension.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof (Sketch).

Theroem

Two Hilbert spaces are isomorphic if and only if they have the same dimension.

Proof (Sketch).

Let *E*, *F* be bases for Hilbert spaces *H*, *K* respectively, such that dim *H* = dim *K*.

Theroem

Two Hilbert spaces are isomorphic if and only if they have the same dimension.

Proof (Sketch).

Let *E*, 𝔅 be bases for Hilbert spaces ℋ, ℋ respectively, such that dim ℋ = dim ℋ.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Construct an isomorphism from \mathscr{H} to $\ell^2(\mathscr{E})$.

Theroem

Two Hilbert spaces are isomorphic if and only if they have the same dimension.

Proof (Sketch).

Let *E*, 𝔅 be bases for Hilbert spaces ℋ, ℋ respectively, such that dim ℋ = dim ℋ.

- Construct an isomorphism from \mathscr{H} to $\ell^2(\mathscr{E})$.
- Do the same for \mathscr{K} to $\ell^2(\mathscr{F})$.

Theroem

Two Hilbert spaces are isomorphic if and only if they have the same dimension.

Proof (Sketch).

Let *E*, 𝔅 be bases for Hilbert spaces ℋ, ℋ respectively, such that dim ℋ = dim ℋ.

- Construct an isomorphism from \mathscr{H} to $\ell^2(\mathscr{E})$.
- Do the same for \mathscr{K} to $\ell^2(\mathscr{F})$.
- Since $|\mathscr{E}| = |\mathscr{F}|$, $\ell^2(\mathscr{E})$ must be isomorphic to $\ell^2(\mathscr{F})$.

Theroem

Two Hilbert spaces are isomorphic if and only if they have the same dimension.

Proof (Sketch).

Let *E*, 𝔅 be bases for Hilbert spaces ℋ, ℋ respectively, such that dim ℋ = dim ℋ.

- Construct an isomorphism from \mathscr{H} to $\ell^2(\mathscr{E})$.
- ▶ Do the same for ℋ to ℓ²(ℱ).
- Since $|\mathscr{E}| = |\mathscr{F}|$, $\ell^2(\mathscr{E})$ must be isomorphic to $\ell^2(\mathscr{F})$.
- Conclude \mathscr{H} is isomorphic to \mathscr{K} .

Further Topics Covered

Linear Operators on Hibert spaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Fourier series
- Sturm-Liouville systems

Texts Used

- A Course in Functional Analysis by John B. Conway
- An Introduction to Hilbert Spaces based on the notes of Rodica D. Costin
- Introduction to Partial Differential Equations and Hilbert Space Methods by Karl E. Gustafson

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ben Russo's brain